Fine-tuning generic but smooth spherically symmetric initial data for general relativity to the threshold of dynamical black hole formation creates arbitrarily large curvatures, mediated by a universal self-similar solution that acts as an intermediate attractor. For vacuum gravitational waves, however, these critical phenomena have been elusive. We present, for the first time, excellent agreement among three independent numerical simulations of this collapse.
View Article and Find Full Text PDFWe numerically investigate the threshold of black-hole formation in the gravitational collapse of electromagnetic waves in axisymmetry. We find approximate power-law scaling ρ_{max}∼(η_{*}-η)^{-2γ} of the maximum density in the time evolution of near-subcritical data with γ≃0.145, where η is the amplitude of the initial data.
View Article and Find Full Text PDF