Publications by authors named "David Hernandez Maldonado"

2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive.

View Article and Find Full Text PDF

Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBaCuO (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO.

View Article and Find Full Text PDF

To help understand the factors controlling the performance of one of the most promising n-type oxide thermoelectric SrTiO, we need to explore structural control at the atomic level. In SrLaTiO ceramics (0.0 ≤ x ≤ 0.

View Article and Find Full Text PDF

The localization of carrier states in GaN/AlN self-assembled quantum dots (QDs) is studied by correlative multimicroscopy relying on microphotoluminescence, electron tomography, and atom probe tomography (APT). Optically active field emission tip specimens were prepared by focused ion beam from an epitaxial film containing a stack of quantum dot layers and analyzed with different techniques applied subsequently on the same tip. The transition energies of single QDs were calculated in the framework of a 6-bands k.

View Article and Find Full Text PDF

A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (μPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed μPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.

View Article and Find Full Text PDF

We show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an InxGa1-xAs multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S.

View Article and Find Full Text PDF