Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored.
View Article and Find Full Text PDFA novel macrocyclic inhibitor of mutant EGFR (BI-4020) has shown promise in pre-clinical studies of T790M and C797S drug-resistant non-small cell lung cancer. To better understand the molecular basis for BI-4020 selectivity and potency, we have carried out biochemical activity assays and structural analysis with X-ray crystallography. Biochemical potencies agree with previous studies indicating that BI-4020 is uniquely potent against drug-resistant L858R/T790M and L858R/T790M/C797S variants.
View Article and Find Full Text PDFBivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets.
View Article and Find Full Text PDFUnlabelled: TFE3 is a member of the basic helix-loop-helix leucine zipper MiT transcription factor family, and its chimeric proteins are associated with translocation renal cell carcinoma (tRCC). Despite the variety of gene fusions, most TFE3 fusion partner genes are related to spliceosome machinery. Dissecting the function of TFE3 fused to spliceosome machinery factors (TFE3-SF) could direct the development of effective therapies for this lethal disease, which is refractory to standard treatments for kidney cancer.
View Article and Find Full Text PDFLung cancer is commonly caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric kinase inhibitors are unaffected by common ATP-site resistance mutations and represent a promising therapeutic strategy for targeting drug-resistant EGFR variants. However, allosteric inhibitors are antagonized by kinase dimerization, and understanding this phenomenon has been limited to cellular experiments.
View Article and Find Full Text PDFEnzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors.
View Article and Find Full Text PDFThe small-molecule drug ralimetinib was developed as an inhibitor of the p38α mitogen-activated protein kinase, and it has advanced to phase 2 clinical trials in oncology. Here, we demonstrate that ralimetinib resembles EGFR-targeting drugs in pharmacogenomic profiling experiments and that ralimetinib inhibits EGFR kinase activity in vitro and in cellulo. While ralimetinib sensitivity is unaffected by deletion of the genes encoding p38α and p38β, its effects are blocked by expression of the EGFR-T790M gatekeeper mutation.
View Article and Find Full Text PDFBivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets.
View Article and Find Full Text PDFSpecificity for a desired enzyme target is an essential property of small-molecule inhibitors. Molecules targeting oncogenic driver mutations in the epidermal growth factor receptor (EGFR) kinase domain have had a considerable clinical impact due to their selective binding to cancer-causing mutants compared to wild type. Despite the availability of clinically approved drugs for cancers driven by EGFR mutants, persistent challenges in drug resistance in the past decades have led to newer generations of drugs with divergent chemical structures.
View Article and Find Full Text PDFThe clinical significance of gene fusions detected by DNA-based next generation sequencing remains unclear as resistance mechanisms to EGFR tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer. By studying EGFR inhibitor-resistant patients treated with a combination of an EGFR inhibitor and a drug targeting the putative resistance-causing fusion oncogene, we identify patients who benefit and those who do not from this treatment approach. Through evaluation including RNA-seq of potential drug resistance-imparting fusion oncogenes in 504 patients with EGFR mutant lung cancer, we identify only a minority of them as functional, potentially capable of imparting EGFR inhibitor resistance.
View Article and Find Full Text PDFLung cancer is frequently caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric EGFR inhibitors offer promise as the next generation of therapeutics, as they are unaffected by common ATP-site resistance mutations and synergize with the drug osimertinib. Here, we examine combinations of ATP-competitive and allosteric inhibitors to better understand the molecular basis for synergy.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) therapy using small-molecule tyrosine kinase inhibitors (TKIs) is initially efficacious in patients with EGFR-mutant lung cancer, although drug resistance eventually develops. Allosteric EGFR inhibitors, which bind to a different EGFR site than existing ATP-competitive EGFR TKIs, have been developed as a strategy to overcome therapy-resistant EGFR mutations. Here we identify and characterize JBJ-09-063, a mutant-selective allosteric EGFR inhibitor that is effective across EGFR TKI-sensitive and resistant models, including those with EGFR T790M and C797S mutations.
View Article and Find Full Text PDFThe C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups.
View Article and Find Full Text PDFThe respiratory epithelium forms the first line of defense against inhaled pathogens and acts as an important source of innate cytokine responses to environmental insults. One critical mediator of these responses is the IL-1 family cytokine IL-33, which is rapidly secreted upon acute epithelial injury as an alarmin and induces type 2 immune responses. Our recent work highlighted the importance of the NADPH oxidase dual oxidase 1 (DUOX1) in acute airway epithelial IL-33 secretion by various airborne allergens associated with HO production and reduction-oxidation-dependent activation of Src kinases and epidermal growth factor receptor (EGFR) signaling.
View Article and Find Full Text PDFMammalian tissues engage in specialized physiology that is regulated through reversible modification of protein cysteine residues by reactive oxygen species (ROS). ROS regulate a myriad of biological processes, but the protein targets of ROS modification that drive tissue-specific physiology in vivo are largely unknown. Here, we develop Oximouse, a comprehensive and quantitative mapping of the mouse cysteine redox proteome in vivo.
View Article and Find Full Text PDFAllosteric kinase inhibitors represent a promising new therapeutic strategy for targeting kinases harboring oncogenic driver mutations in cancers. Here, we report the discovery, optimization, and structural characterization of allosteric mutant-selective EGFR inhibitors comprising a 5,10-dihydro-11-dibenzo[,][1,4]diazepin-11-one scaffold. Our structure-based medicinal chemistry effort yielded an inhibitor () of the EGFR(L858R/T790M) and EGFR(L858R/T790M/C797S) mutants with an IC of ∼10 nM and high selectivity, as assessed by kinome profiling.
View Article and Find Full Text PDFProtein kinases are essential mediators of cellular signal transduction and are often dysregulated in disease. Among these, protein tyrosine kinases (PTKs) have received specific interest due to their common roles in various diseases including cancer, and emerging observations indicating that PTK signalling pathways are susceptible to regulation by reactive oxygen species (ROS), which are also frequently implicated in disease pathology. While it is well recognized that ROS can impact on tyrosine kinase signalling by inhibiting tyrosine phosphatases, more recent studies highlight additional modes of redox-based regulation of tyrosine kinase signalling by direct redox modification of non-catalytic cysteines within tyrosine kinases or other protein components of this signalling pathway.
View Article and Find Full Text PDF