Aim: To identify and describe the impact areas of a newly developed leadership development programme focussed on positioning leaders to improve the student experience of the clinical learning environment.
Background: There is a need to consider extending traditional ways of developing leaders within the clinical learning in order to accommodate an increased number of students and ensure their learning experience is fulfilling and developmental. The Florence Nightingale Foundation implemented a bespoke leadership development programme within the clinical learning environment.
Vascular tissue in plants provides a resource distribution network for water and nutrients that exhibits remarkable diversity in patterning among different species. In many succulent plants, the vascular network includes longitudinally-oriented supplemental vascular bundles (SVBs) in the central core of the succulent stems and roots in addition to the more typical zone of vascular tissue development (vascular cambium) in a cylinder at the periphery of the succulent organ. Plant SVBs evolved in over 38 plant families often in tandem with evolutionary increases in stem and root parenchyma storage tissue, so it is of interest to understand the evolutionary-developmental processes responsible for their recurrent evolution and patterning.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2018
Enterobacter sp. strain OLF colonizes laboratory-reared and wild individuals of the olive fruit fly Bactrocera oleae. The 5.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2018
Erwinia dacicola is a dominant endosymbiont of the pestiferous olive fly. Its genome is similar in size and GC content to those of free-living species, including the plant pathogen Erwinia amylovora. The E.
View Article and Find Full Text PDFThe pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed.
View Article and Find Full Text PDFPlant succulence provides a classic example of evolutionary convergence in over 40 plant families. If evolutionary parallelism is in fact responsible for separate evolutionary origins of expanded storage tissues in stems, hypocotyls, and roots, we expect similar gene expression profiles in stem and hypocotyl / root tubers. We analyzed RNA-Seq transcript abundance patterns in stem and hypocotyl / root tubers of the Brassica crops kohlrabi (B.
View Article and Find Full Text PDFThe number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E.
View Article and Find Full Text PDFBackground: The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein.
View Article and Find Full Text PDFPatterns of adaptation in response to environmental variation are central to our understanding of biodiversity, but predictions of how and when broad-scale environmental conditions such as climate affect organismal form and function remain incomplete. Succulent plants have evolved in response to arid conditions repeatedly, with various plant organs such as leaves, stems, and roots physically modified to increase water storage. Here, we investigate the role played by climate conditions in shaping the evolution of succulent forms in a plant clade endemic to Madagascar and the surrounding islands, part of the hyper-diverse genus Euphorbia (Euphorbiaceae).
View Article and Find Full Text PDFInsects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung.
View Article and Find Full Text PDFBiological systems are remarkably robust in the face of environmental, mutational, and developmental perturbations. Analyses of molecular networks reveal recurrent features, such as modularity, that have been implicated in robustness and evolvability. Multiple theoretical models account for these features, yet few empirical tests of these models exist.
View Article and Find Full Text PDFThe microbiome of the olive fruit fly, Bactrocera oleae (Gmelin), a worldwide pest of olives (Olea europaea L.), has been examined for >100 yr as part of efforts to identify bacteria that are plant pathogens vectored by the fly or are beneficial endosymbionts essential for the fly's survival and thus targets for possible biological control. Because tephritid fruit flies feed on free-living bacteria in their environment, distinguishing between the transient, acquired bacteria of their diet and persistent, resident bacteria that are vertically transmitted endosymbionts is difficult.
View Article and Find Full Text PDFCompeting evolutionary forces shape plant breeding systems (e.g. inbreeding depression, reproductive assurance).
View Article and Find Full Text PDFBackground: In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors.
View Article and Find Full Text PDFThe architecture of flowering plants is astonishingly diverse. To understand evolutionary patterns and processes that account for this diversity, I investigated developmental anatomy of storage roots and stems of 58 species in the genus Adenia (Passifloraceae) using an explicit phylogenetic context. Because expanded storage roots and stem succulence evolved multiple times in Adenia, patterns of transition between succulent and nonsucculent forms were analyzed using a comparative test that accommodates phylogenetic uncertainty.
View Article and Find Full Text PDFAs polyphagous, holometabolous insects, tephritid fruit flies (Diptera: Tephritidae) provide a unique habitat for endosymbiotic bacteria, especially those microbes associated with the digestive system. Here we examine the endosymbiont of the olive fly [Bactrocera oleae (Rossi) (Diptera: Tephritidae)], a tephritid of great economic importance. "Candidatus Erwinia dacicola" was found in the digestive systems of all life stages of wild olive flies from the southwestern United States.
View Article and Find Full Text PDFUsing an explicit phylogenetic framework, ontogenetic patterns of leaf form are compared among the three genera of marsileaceous ferns (Marsilea, Regnellidium, and Pilularia) with the outgroup Asplenium to address the hypothesis that heterochrony played a role in their evolution. We performed a Fourier analysis on a developmental sequence of leaves from individuals of these genera. Principal components analysis of the harmonic coefficients was used to characterize the ontogenetic trajectories of leaf form in a smaller dimensional space.
View Article and Find Full Text PDFThe ancestral distance test is introduced to detect correlated evolution between two binary traits in large phylogenies that may lack resolved subclades, branch lengths, and/or comparative data. We define the ancestral distance as the time separating a randomly sampled taxon from its most recent ancestor (MRA) with extant descendants that have an independent trait. The sampled taxon either has (target sample) or lacks (nontarget sample) a dependent trait.
View Article and Find Full Text PDFEvolutionary ecologists have long sought to understand the conditions under which perennial (iteroparous) versus annual (semelparous) plant life histories are favored. We evaluated the idea that aridity and variation in the length of droughts should favor the evolution of an annual life history, both by decreasing adult survival and by increasing the potential for high seedling survival via reduced plant cover. We calculated phylogenetically independent contrasts of climate with respect to life history in a clade of winter-establishing evening primroses (sections Anogra and Kleinia; Oenothera; Onagraceae), which includes seven annuals, 12 perennials, and two variable taxa.
View Article and Find Full Text PDF