Publications by authors named "David Haukos"

Population genomics can reveal cryptic biological diversity that may impact fitness while simultaneously serving to delineate relevant conservation units. Here, we leverage the power of whole-genome resequencing for conservation by studying 433 individual lesser prairie-chicken (; LEPC, a federally endangered species of conservation concern in the United States) and greater prairie-chicken (; GRPC, a legally huntable species throughout much of its range). The genomic diversity of two formally recognized distinct population segments (DPSs) of LEPCs is similar, but they are genetically distinct.

View Article and Find Full Text PDF

Wildlife telemetry data may be used to answer a diverse range of questions relevant to wildlife ecology and management. One challenge to modeling telemetry data is that animal movement often varies greatly in pattern over time, and current continuous-time modeling approaches to handle such nonstationarity require bespoke and often complex models that may pose barriers to practitioner implementation. We demonstrate a novel application of treed Gaussian process (TGP) modeling, a Bayesian machine learning approach that automatically captures the nonstationarity and abrupt transitions present in animal movement.

View Article and Find Full Text PDF

Lesser prairie-chicken (Tympanuchus pallidicinctus) populations of in the Sand Sagebrush Prairie Ecoregion of southwest Kansas and southeast Colorado, USA, have declined sharply since the mid-1980s. Decreased quality and availability of habitat are believed to be the main drivers of declines. Our objective was to reconstruct broad-scale change in the ecoregion since 1985 as a potential factor in population declines.

View Article and Find Full Text PDF

Conservation translocations are frequently inhibited by extensive dispersal after release, which can expose animals to dispersal-related mortality or Allee effects due to a lack of nearby conspecifics. However, translocation-induced dispersals also provide opportunities to study how animals move across a novel landscape, and how their movements are influenced by landscape configuration and anthropogenic features. Translocation among populations is considered a potential conservation strategy for lesser prairie-chickens ().

View Article and Find Full Text PDF

Wetland ecosystems are vital for maintaining global biodiversity, as they provide important stopover sites for many species of migrating wetland-associated birds. However, because weather determines their hydrologic cycles, wetlands are highly vulnerable to effects of climate change. Although changes in temperature and precipitation resulting from climate change are expected to reduce inundation of wetlands, few efforts have been made to quantify how these changes will influence the availability of stopover sites for migratory wetland birds.

View Article and Find Full Text PDF
Article Synopsis
  • Incubation breaks are essential for nesting birds but can raise the risk of nest loss; the study focuses on how various factors influence female Lesser Prairie-chickens' nest attentiveness and survival of nests.
  • Data from 87 female birds across 109 nests showed that higher nest attentiveness (from 21% to 98%) led to a 39% increase in daily nest survival, but factors like body mass and environmental conditions affected this attentiveness.
  • The findings indicate that as climate changes, greater temperatures and extreme weather could negatively impact the nest success of ground-nesting birds, highlighting the need to understand their incubation behavior in changing environments.
View Article and Find Full Text PDF

The Lesser Prairie-Chicken (Tympanuchus pallidicinctus; LEPC) is an iconic North American prairie grouse, renowned for ornate and spectacular breeding season displays. Unfortunately, the species has disappeared across much of its historical range, with corresponding precipitous declines in contemporary population abundance, largely due to climatic and anthropogenic factors. These declines led to a 2022 US Fish and Wildlife decision to identify and list two distinct population segments (DPSs; i.

View Article and Find Full Text PDF

Recent studies have documented benefits of small, prescribed fire and wildfire for grassland-dependent wildlife, such as lesser prairie-chickens (), but wildlife demographic response to the scale and intensity of megafire (wildfire >40,000 ha) in modern, fragmented grasslands remains unknown. Limited available grassland habitat makes it imperative to understand if increasing frequency of megafires could further reduce already declining lesser prairie-chicken populations, or if historical evolutionary interactions with fire make lesser prairie-chickens resilient. To evaluate lesser prairie-chicken demographic response to megafires, we compared lek counts, nest density, and survival rates of adults, nests, and chicks before (2014-2016) and after (2018-2020) a 2017 megafire in the mixed-grass prairie of Kansas, USA (Starbuck fire ~254,000 ha).

View Article and Find Full Text PDF

Globally, migration phenologies of numerous avian species have shifted over the past half-century. Despite North American waterfowl being well researched, published data on shifts in waterfowl migration phenologies remain scarce. Understanding shifts in waterfowl migration phenologies along with potential drivers is critical for guiding future conservation efforts.

View Article and Find Full Text PDF

Hybridization is a natural process at species-range boundaries that may variably promote the speciation process or break down species barriers but minimally will influence management outcomes of distinct populations. White-tailed deer () and mule deer () have broad and overlapping distributions in North America and a recognized capacity for interspecific hybridization. In response to contemporary environmental change to any of one or multiple still-unknown factors, mule deer range is contracting westward accompanied by a westward expansion of white-tailed deer, leading to increasing interactions, opportunities for gene flow, and associated conservation implications.

View Article and Find Full Text PDF

Agricultural landscapes are the leading edge in the advancement of sustainability and climate change adaptation. The purpose of this study is to endogenize culture as shaped by natural-cultural feedback into individuals' decision-making processes on sustainability policy support. We present an agent-based model in which an adaptive cultural decision-rule quantifies the probability of an agent deciding to support a wildlife area policy for the Smoky Hill River Watershed (SHRW) in Kansas, USA.

View Article and Find Full Text PDF

The predominant grazing-management practice of the Kansas Flint Hills involves annual prescribed burning in March or April with postfire grazing by yearling beef cattle at a high stocking density from April to August. There has been a dramatic increase in sericea lespedeza ( [Dumont] G. Don) coincident with this temporally focused use of prescribed fire in the Flint Hills region.

View Article and Find Full Text PDF

Loss and degradation of grasslands in the Great Plains region have resulted in major declines in abundance of grassland bird species. To ensure future viability of grassland bird populations, it is crucial to evaluate specific effects of environmental factors among species to determine drivers of population decline and develop effective conservation strategies. We used threshold models to quantify the effects of land cover and weather changes in "lesser prairie-chicken" and "greater prairie-chicken" ( and , respectively), northern bobwhites (), and ring-necked pheasants ().

View Article and Find Full Text PDF

Sustainability has been at the forefront of the environmental research agenda of the integrated anthroposphere, hydrosphere, and biosphere since the last century and will continue to be critically important for future environmental science. However, linking humans and the environment through effective policy remains a major challenge for sustainability research and practice. Here we address this gap using an agent-based model (ABM) for a coupled natural and human systems in the Smoky Hill River Watershed (SHRW), Kansas, USA.

View Article and Find Full Text PDF
Article Synopsis
  • The extent and impact of lead contamination in wetland systems are not well understood, particularly concerning its effects on waterfowl like mottled ducks that inhabit these areas.
  • Lead levels in wetland soils were measured on the Upper Texas Coast, revealing variability (0.01-1085.51 ppm) and a correlation between higher lead concentrations and the presence of mottled ducks.
  • Mottled ducks, known for their nonmigratory behavior, are at increased risk of lead exposure, especially after disturbances in their habitats, suggesting that they may be trapped in contaminated but seemingly quality environments, which needs further study.
View Article and Find Full Text PDF

Researchers and managers are often interested in monitoring the underlying state of a population (e.g., abundance), yet error in the observation process might mask underlying changes due to imperfect detection and availability for sampling.

View Article and Find Full Text PDF

We used the lesser prairie-chicken (), an iconic grouse species that exhibits a boom-bust life history strategy, on the Southern High Plains, USA, as a bioindicator of main and interactive effects of severe drought and grazing. This region experienced the worst drought on record in 2011. We surveyed lesser prairie-chicken leks (i.

View Article and Find Full Text PDF

Playa wetlands, the dominant hydrological feature of the semi-arid U.S. High Plains providing critical ecosystem services, are being lost and degraded due to anthropogenic alterations of the short-grass prairie landscape.

View Article and Find Full Text PDF

There are no known biological requirements for lead (Pb), and elevated Pb levels in birds can cause a variety of sub-lethal effects and mortality. Historic and current levels of Pb in mottled ducks (Anas fulvigula) suggest that environmental sources of Pb remain available on the upper Texas coast. Because of potential risks of Pb exposure among coexisting marsh birds, black-necked stilt (Himantopus mexicanus) blood Pb concentrations were measured during the breeding season.

View Article and Find Full Text PDF

Watershed cultivation and subsequent soil erosion remains the greatest threat to the service provisioning of playa wetlands in the High Plains. The U.S.

View Article and Find Full Text PDF

The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico.

View Article and Find Full Text PDF

Identifying community assembly filters is a primary ecological aim. The High Plains, a 30 million ha short-grass eco-region, is intensely cultivated. Cultivation disturbance, including plowing and eroded soil deposition down-slope of plowing, influences plant composition in depressional wetlands, such as playas, within croplands.

View Article and Find Full Text PDF

Playas are the primary wetland system in the Southern Great Plains (SGP) of North America providing critical stopover habitats for migratory birds in the Western Hemisphere. Collectively, these wetlands form the keystone ecosystem in this region supporting biodiversity for North America and provide habitat for native plants and animals that are essential for maintenance of international biological diversity along with other local and regional ecological services. Large-scale landscape changes in this region, primarily as a result of agriculturally-based anthropogenic impacts, threaten playas with functional loss and physical extinction.

View Article and Find Full Text PDF

We examined pesticide contamination in sediments from depressional playa wetlands embedded in the three dominant land-use types in the western High Plains and Rainwater Basin of the United States including cropland, perennial grassland enrolled in conservation programs (e.g., Conservation Reserve Program [CRP]), and native grassland or reference condition.

View Article and Find Full Text PDF