Uranium metal is associated with several aspects of nuclear technology; it is used as fuel for research and power reactors, targets for medical isotope productions, explosive for nuclear weapons and precursors in synthetic chemistry. The study of uranium metal at the laboratory scale presents the opportunity to evaluate metallic nuclear fuels, develop new methods for metallic spent fuel reprocessing and advance the science relevant to nuclear forensics and medical isotope production. Since its first isolation in 1841, from the reaction of uranium chloride and potassium metal, uranium metal has been prepared by solid-state reactions and in solution by electrochemical, chemical and radiochemical methods.
View Article and Find Full Text PDFSimultaneous high transparency and high haze are necessary for high-efficiency optical, photonic, and optoelectronic applications. However, a typical highly transparent film lacks high optical haze or . Here, we report a silk fibroin-based optical film that exhibits both ultrahigh optical transparency (>93%) and ultrahigh optical transmission haze (>65%).
View Article and Find Full Text PDFWe have successfully loaded H(2) into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of NH(3)BH(3). In a second set of studies, radiation-assisted release of O(2) from KCLO(3), H(2) release from NH(3)BH(3), and reaction of these gases in a mixture of the reactants to form liquid water using x-rays at ambient conditions was observed. Similar observations were made using a KCLO(3) and NaBH(4) mixture.
View Article and Find Full Text PDF