The cotton bollworm, Helicoverpa armigera, has developed strong resistance to many insecticides. Sterol Carrier Protein-2 (SCP-2) is an important non-specific lipid transfer protein in insects and appears to be a potential new target. In order to elucidate the structure and function of Helicoverpa armigera SCP-2 (HaSCP-2), NMR spectroscopy, docking simulations, mutagenesis and bioassays were performed.
View Article and Find Full Text PDFWe have previously shown that the acyl transferase domain of ZmaA (ZmaA-AT) is involved in the biosynthesis of the aminopolyol polyketide/nonribosomal peptide hybrid molecule zwittermicin A from cereus UW85, and that it specifically recognizes the precursor hydroxymalonyl-acyl carrier protein (ACP) and transfers the hydroxymalonyl extender unit to a downstream second ACP via a transacylated AT domain intermediate. We now present the X-ray crystal structure of ZmaA-AT at a resolution of 1.7 Å.
View Article and Find Full Text PDFBackground: Schistosomiasis is a neglected tropical disease with high morbidity and mortality in the world. Currently, the treatment of this disease depends almost exclusively on praziquantel (PZQ); however, the emergence of drug resistance to PZQ in schistosomes makes the development of novel drugs an urgent task. Aldose reductase (AR), an important component that may be involved in the schistosome antioxidant defense system, is predicted as a potential drug target.
View Article and Find Full Text PDFComposting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
February 2011
Sterol carrier protein-2 (SCP-2) is a nonspecific intracellular lipid carrier protein. However, the molecular mechanism of ligand selectivity and the in vivo function of SCP-2 remain unclear. In this study, we used site-directed mutagenesis to investigate the ligand selectivity and in vivo function of the yellow fever mosquito sterol carrier protein-2 protein (AeSCP-2).
View Article and Find Full Text PDFThe sterol carrier protein-2 like 3 gene (AeSCP-2L3), a new member of the SCP-2 protein family, is identified from the yellow fever mosquito, Aedes aegypti. The predicted molecular weight of AeSCP-2L3 is 13.4 kDa with a calculated pI of 4.
View Article and Find Full Text PDFMosquito sterol carrier protein-2 (AeSCP-2) and sterol carrier protein-2-like2 (AeSCP-2L2) are members of the SCP-2 protein family with similar expression profiles in the mosquito life cycle. In an effort to understand how lipids can be transported by different SCP-2 proteins, the three-dimensional crystal structure of AeSCP-2L2 was solved at 1.7 A resolution.
View Article and Find Full Text PDFType IV pili (Tfp) are widespread filamentous bacterial organelles that mediate multiple virulence-related phenotypes. They are composed mainly of pilin subunits, which are processed before filament assembly by dedicated prepilin peptidases. Other proteins processed by these peptidases, whose molecular nature and mode of action remain enigmatic, play critical roles in Tfp biology.
View Article and Find Full Text PDFGenome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization.
View Article and Find Full Text PDFYellow fever mosquito sterol carrier protein (SCP-2) is known to bind to cholesterol. We report here the three-dimensional structure of the complex of SCP-2 from Aedes aegypti with a C16 fatty acid to 1.35-A resolution.
View Article and Find Full Text PDFThe Azotobacter vinelandii NafY protein (nitrogenase accessory factor Y) is able to bind either to the iron molybdenum cofactor (FeMo-co) or to apodinitrogenase and is believed to facilitate the transfer of FeMo-co into apodinitrogenase. The NafY protein has two domains: an N-terminal domain (residues Met1-Leu98) and a C-terminal domain (residues Glu99-Ser232), referred here to as the "core domain." The core domain of NafY is shown here to be capable of binding the FeMo cofactor of nitrogenase but unable to bind to apodinitrogenase in the absence of the first domain.
View Article and Find Full Text PDF