This paper presents the application of CORPS (coherently radiating periodic structures) for feeding CRA (concentric rings array) with a reduced number of phase shifters. The proposed design technique for the structure of concentric rings provides a better scanning capability with respect to other existing configurations. This design technique utilizes 2 × 3 or 4 × 7 CORPS networks depending on the configuration or the number of antenna elements in the phased array system.
View Article and Find Full Text PDFMicromachines (Basel)
November 2022
This paper presents novel design techniques for the Fermat spiral, considering a maximum side lobe level (SLL) reduction. The array system based on a Fermat spiral configuration considers techniques based on uniform and non-uniform amplitude excitation. The cases of uniform amplitude excitation are the golden angle and the optimization of the angular separations.
View Article and Find Full Text PDFThis paper illustrates the application of CORPS (coherently radiating periodic structures) for feeding 2-D phased arrays with a reduced number of phase shifter (PS) devices. Three design configurations using CORPS are proposed for 2-D phased arrays. The design model of phased array for these configurations considers the cophasal excitation required for this structure to set a strategic way for feeding the antenna elements and reducing the number of PS devices.
View Article and Find Full Text PDFA progressive paradigm shift from centralized to distributed network architectures has been consolidated since the 4G communication standard, calling for novel decision-making mechanisms with distributed control to operate at the network edge. This situation implies that each base station (BS) must manage resources independently to meet the quality of service (QoS) of existing human-type communication devices (HTC), as well as the emerging machine type communication (MTC) devices from the internet of things (IoT). In this paper, we address the BS assignment problem, whose aim is to determine the most appropriate serving BS to each mobile device.
View Article and Find Full Text PDFThis paper presents the design of aperiodic concentric ring arrays for ultra-wide bandwidths (UW-ACRA). This design of ultra-wideband arrays considers the synthesis of concentric rings in two cases: 1) non-uniform spacing between rings with non-uniform spacing between antenna elements of the same ring (UW-ACRA); and 2) non-uniform spacing between rings assuming that spacing between antenna elements of the same ring to be equal (UW-ACRA). This is in order to eliminate the occurrence of grating lobes and generating array structures with useful ultra-wideband properties.
View Article and Find Full Text PDF