Publications by authors named "David H Cobden"

Stacking monolayer semiconductors creates moiré patterns, leading to correlated and topological electronic phenomena, but measurements of the electronic structure underpinning these phenomena are scarce. Here, we investigate the properties of the conduction band in moiré heterobilayers of WS/WSe using submicrometer angle-resolved photoemission spectroscopy with electrostatic gating. We find that at all twist angles the conduction band edge is the -point valley of the WS, with a band gap of 1.

View Article and Find Full Text PDF

Twisted double bilayer graphene (tDBG) has emerged as a rich platform for studying strongly correlated and topological states, as its flat bands can be continuously tuned by both a perpendicular displacement field and a twist angle. Here, we construct a phase diagram representing the correlated and topological states as a function of these parameters, based on measurements of over a dozen tDBG devices encompassing two distinct stacking configurations. We find a hierarchy of symmetry-broken states that emerge sequentially as the twist angle approaches an apparent optimal value of θ ≈ 1.

View Article and Find Full Text PDF

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe.

View Article and Find Full Text PDF

Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence, symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here, we report nonlinear magneto-optical second harmonic generation (SHG) studies of nonmagnetic topological materials including bilayer WTe, monolayer WSe, and bulk TaAs. The polarization-resolved patterns of optical SHG under a magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials.

View Article and Find Full Text PDF

The extreme versatility of van der Waals materials originates from their ability to exhibit new electronic properties when assembled in close proximity to dissimilar crystals. For example, although graphene is inherently nonmagnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway toward achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI, CrBr, and CrCl).

View Article and Find Full Text PDF

A Chern insulator is a two-dimensional material that hosts chiral edge states produced by the combination of topology with time reversal symmetry breaking. Such edge states are perfect one-dimensional conductors, which may exist not only on sample edges, but on any boundary between two materials with distinct topological invariants (or Chern numbers). Engineering of such interfaces is highly desirable due to emerging opportunities of using topological edge states for energy-efficient information transmission.

View Article and Find Full Text PDF

In electronic and optoelectronic devices made from van der Waals heterostructures, electric fields can induce substantial band structure changes which are crucial to device operation but cannot usually be directly measured. Here, we use spatially resolved angle-resolved photoemission spectroscopy to monitor changes in band alignment of the component layers, corresponding to band structure changes of the composite heterostructure system, that are produced by electrostatic gating. Our devices comprise graphene on a monolayer semiconductor, WSe or MoSe, atop a boron nitride dielectric and a graphite gate.

View Article and Find Full Text PDF

Moiré superlattices of 2D materials with a small twist angle are thought to exhibit appreciable flexoelectric effect, though unambiguous confirmation of their flexoelectricity is challenging due to artifacts associated with commonly used piezoresponse force microscopy (PFM). For example, unexpectedly small phase contrast (≈8°) between opposite flexoelectric polarizations is reported in twisted bilayer graphene (tBG), though theoretically predicted value is 180°. Here a methodology is developed to extract intrinsic moiré flexoelectricity using twisted double bilayer graphene (tDBG) as a model system, probed by lateral PFM.

View Article and Find Full Text PDF

Tungsten ditelluride (WTe) is an atomically layered transition metal dichalcogenide whose physical properties change systematically from monolayer to bilayer and few-layer versions. In this report, we use apertureless scattering-type near-field optical microscopy operating at Terahertz (THz) frequencies and cryogenic temperatures to study the distinct THz range electromagnetic responses of mono-, bi- and trilayer WTe in the same multi-terraced micro-crystal. THz nano-images of monolayer terraces uncovered weakly insulating behavior that is consistent with transport measurements.

View Article and Find Full Text PDF
Article Synopsis
  • Auger recombination in semiconductors involves electrons and holes recombining while exciting other charge carriers, with excess energy typically converted to heat.
  • The researchers developed a method to detect Auger-excited carriers by observing the current generated when they tunnel through a barrier in a specific semiconductor setup using WSe, hexagonal boron nitride, and graphite.
  • Their findings reveal strong Auger scattering even with weak excitation and add new techniques for studying relaxation processes in two-dimensional materials.
View Article and Find Full Text PDF

The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability to simply stack very different two-dimensional van der Waals materials in intimate contact permits a different approach. Here we use this approach to couple the helical edges states in a two-dimensional topological insulator, monolayer WTe (refs.

View Article and Find Full Text PDF

The physical properties of two-dimensional van der Waals crystals can be sensitive to interlayer coupling. For two-dimensional magnets, theory suggests that interlayer exchange coupling is strongly dependent on layer separation while the stacking arrangement can even change the sign of the interlayer magnetic exchange, thus drastically modifying the ground state. Here, we demonstrate pressure tuning of magnetic order in the two-dimensional magnet CrI.

View Article and Find Full Text PDF

The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy (microARPES) applied to two-dimensional van der Waals heterostructures affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied.

View Article and Find Full Text PDF

The recent discovery of magnetism in atomically thin layers of van der Waals (vdW) crystals has created new opportunities for exploring magnetic phenomena in the two-dimensional (2D) limit. In most 2D magnets studied to date, the c-axis is an easy axis, so that at zero applied field the polarization of each layer is perpendicular to the plane. Here, we demonstrate that atomically thin CrCl is a layered antiferromagnetic insulator with an easy-plane normal to the c-axis, that is, the polarization is in the plane of each layer and has no preferred direction within it.

View Article and Find Full Text PDF

A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe. Here, we directly image the local conductivity of monolayer WTe using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above.

View Article and Find Full Text PDF

Atomically thin chromium triiodide (CrI) has recently been identified as a layered antiferromagnetic insulator, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. This unusual magnetic structure naturally comprises a series of antialigned spin filters, which can be utilized to make spin-filter magnetic tunnel junctions with very large tunneling magnetoresistance (TMR). Here we report voltage control of TMR formed by four-layer CrI sandwiched by monolayer graphene contacts in a dual-gated structure.

View Article and Find Full Text PDF

The layered semimetal tungsten ditelluride (WTe) has recently been found to be a two-dimensional topological insulator (2D TI) when thinned down to a single monolayer, with conducting helical edge channels. We found that intrinsic superconductivity can be induced in this monolayer 2D TI by mild electrostatic doping at temperatures below 1 kelvin. The 2D TI-superconductor transition can be driven by applying a small gate voltage.

View Article and Find Full Text PDF

Discoveries of intrinsic two-dimensional (2D) ferromagnetism in van der Waals (vdW) crystals provide an interesting arena for studying fundamental 2D magnetism and devices that employ localized spins. However, an exfoliable vdW material that exhibits intrinsic 2D itinerant magnetism remains elusive. Here we demonstrate that FeGeTe (FGT), an exfoliable vdW magnet, exhibits robust 2D ferromagnetism with strong perpendicular anisotropy when thinned down to a monolayer.

View Article and Find Full Text PDF

A ferroelectric is a material with a polar structure whose polarity can be reversed (switched) by applying an electric field. In metals, itinerant electrons screen electrostatic forces between ions, which explains in part why polar metals are very rare. Screening also excludes external electric fields, apparently ruling out the possibility of ferroelectric switching.

View Article and Find Full Text PDF

Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance that is drastically enhanced with increasing CrI layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures.

View Article and Find Full Text PDF

Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features.

View Article and Find Full Text PDF

Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage.

View Article and Find Full Text PDF

Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe/WSe heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence.

View Article and Find Full Text PDF

Hydrogen intercalation in solids is common, complicated, and very difficult to monitor. In a new approach to the problem, we have studied the profile of hydrogen diffusion in single-crystal nanobeams and plates of VO2, exploiting the fact that hydrogen doping in this material leads to visible darkening near room temperature connected with the metal-insulator transition at 65 °C. We observe hydrogen diffusion along the rutile c-axis but not perpendicular to it, making this a highly one-dimensional diffusion system.

View Article and Find Full Text PDF

The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging.

View Article and Find Full Text PDF