Publications by authors named "David H Abbott"

Context: Adipose steroid metabolism modifies body fat development in polycystic ovary syndrome (PCOS).

Objective: To determine whether subcutaneous (SC) abdominal adipose aldo-keto reductase 1C3 (AKR1C3; a marker of testosterone generation) is increased in normal-weight women with PCOS vs age- and body mass index (BMI)-matched normoandrogenic ovulatory women (controls) and is related to SC abdominal adipose activator protein-1 (AP-1; a marker of adipocyte differentiation) and/or androgen receptor (AR) protein expression in predicting fat accretion.

Design: Prospective cohort study.

View Article and Find Full Text PDF

Anti-Müllerian hormone (AMH) is an important component within androgen receptor (AR)-regulated pathways governing the hyperandrogenic origin of polycystic ovary syndrome (PCOS). In women with PCOS, granulosa cell AMH overexpression in developing ovarian follicles contributes to elevated circulating AMH levels beginning at birth and continuing in adolescent daughters of PCOS women. A 6 to 7% incidence among PCOS women of gene variants coding for AMH or its receptor, AMHR2, suggests genetic contributions to AMH-related pathogenesis.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro.

View Article and Find Full Text PDF

Context: Ovarian and adrenal steroidogenesis underlie endocrine-metabolic dysfunction in polycystic ovary syndrome (PCOS). Adipocytes express aldo-keto reductase 1C3 and type 1 11β-hydroxysteroid dehydrogenase, which modulate peripheral androgen and cortisol production.

Objectives: To compare serum adrenal steroids, including 11-oxygenated androgens (11-oxyandrogens), cortisol, and cortisone between normal-weight women with PCOS and body mass index- and age-matched ovulatory women with normal-androgenic profiles (controls), and assess whether adrenal steroids associate with abdominal adipose deposition.

View Article and Find Full Text PDF

Objective: To examine whether low-dose flutamide administration to normal-weight women with polycystic ovary syndrome (PCOS) reduces abdominal fat deposition, attenuates accelerated lipid accumulation in newly formed adipocytes derived from subcutaneous (SC) abdominal adipose stem cells (ASCs), and/or alters glucose-lipid metabolism.

Design: A double-blind, placebo-controlled randomized clinical trial.

Setting: An academic medical center.

View Article and Find Full Text PDF

We conducted a dose-response study of dexamethasone to investigate an optimal dexamethasone suppression test for common marmosets. Twelve marmosets received 0.1, 0.

View Article and Find Full Text PDF

Context: Ovarian estradiol supports female sexual behavior and metabolic function. While ovariectomy (OVX) in rodents abolishes sexual behavior and enables obesity, OVX in nonhuman primates decreases, but does not abolish, sexual behavior, and inconsistently alters weight gain.

Objective: We hypothesize that extra-ovarian estradiol provides key support for both functions, and to test this idea, we employed aromatase inhibition to eliminate extra-ovarian estradiol biosynthesis and diet-induced obesity to enhance weight gain.

View Article and Find Full Text PDF

Long-chain polyunsaturated fatty acids (LCPUFAs) are critical for fetal brain development. Infants born to preeclamptic mothers or those born growth restricted due to placental insufficiency have reduced LCPUFA and are at higher risk for developing neurodevelopmental disorders. Since plasma levels of testosterone (T) and fatty acid-binding protein 4 (FABP4) are elevated in preeclampsia, we hypothesized that elevated T induces the expression of FABP4 in the placenta leading to compromised transplacental transport of LCPUFAs.

View Article and Find Full Text PDF

As in women with polycystic ovary syndrome (PCOS), hyperinsulinemia is associated with anovulation in PCOS-like female rhesus monkeys. Insulin sensitizers ameliorate hyperinsulinemia and stimulate ovulatory menstrual cycles in PCOS-like monkeys. To determine whether hyperinsulinemia (>694 pmol/L), alone, induces PCOS-like traits, five PCOS-like female rhesus monkeys with minimal PCOS-like traits, and four control females of similar mid-to-late reproductive years and body mass index, received daily subcutaneous injections of recombinant human insulin or diluent for 6−7 months.

View Article and Find Full Text PDF

As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity.

View Article and Find Full Text PDF

Context: Increased aldo-keto reductase 1C3 (AKR1C3)-mediated conversion of androstenedione (A4) to testosterone (T) promotes lipid storage in subcutaneous (SC) abdominal adipose in overweight/obese polycystic ovary syndrome (PCOS) women.

Objective: This work examines whether an elevated serum T/A4 ratio, as a marker of enhanced AKR1C3 activity in SC abdominal adipose, predicts metabolic function in normal-weight PCOS women.

Methods: This prospective cohort study took place in an academic center and comprised 19 normal-weight PCOS women and 21 age- and body mass index-matched controls.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a prevalent reproductive-metabolic disorder with poorly understood etiology. Mimouni et al. (2021) demonstrate global genomic DNA hypomethylation in women with PCOS and their daughters, and in F3 generation PCOS-like mice, together with substantial normalization of PCOS-like mice by methyl donor dietary supplementation.

View Article and Find Full Text PDF

Objective: To examine whether subcutaneous (SC) abdominal adipose stem cell differentiation into adipocytes in vitro predicts insulin sensitivity (Si) in vivo in normal-weight women with polycystic ovary syndrome (PCOS) and controls.

Design: Prospective cohort study.

Setting: Academic medical center.

View Article and Find Full Text PDF

The rhesus macaque () is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology, with metabolic dysfunction from insulin resistance and abdominal fat accumulation worsened by obesity. As ancestral traits, these features could have favored abdominal fat deposition for energy use during starvation, but have evolved into different PCOS phenotypes with variable metabolic dysfunction. Adipose dysfunction in PCOS from hyperandrogenemia and hyperinsulinemia likely constrains subcutaneous (SC) fat storage, promoting lipotoxicity through ectopic lipid accumulation and oxidative stress, insulin resistance and inflammation in non-adipose tissue.

View Article and Find Full Text PDF

'Androgenized' rodent models are widely used to explore the pathophysiology underlying human polycystic ovary syndrome (PCOS), including reproductive and metabolic dysfunction. Based on a recent study using a dihydrotestosterone (DHT)-treated murine model, it has been proposed that prenatal androgen excess alone can predispose to transgenerational transmission of PCOS. From RNA sequencing analysis of metaphase II (MII) oocytes of androgenized lineages, the authors speculated that oocyte factors, including up-regulation of cytotoxic granulosa-associated RNA binding protein-like 1 (TiaL1), are sufficient to promote disease transfer across generations.

View Article and Find Full Text PDF

More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined.

View Article and Find Full Text PDF

Indian rhesus macaque nonhuman primate models for polycystic ovary syndrome (PCOS) implicate both female hyperandrogenism and developmental molecular origins as core components of PCOS etiopathogenesis. Establishing and exploiting macaque models for translational impact into the clinic, however, has required multi-year, integrated basic-clinical science collaborations. Paradigm shifting insight has accrued from such concerted investment, leading to novel mechanistic understanding of PCOS, including hyperandrogenic fetal and peripubertal origins, epigenetic programming, altered neural function, defective oocytes and embryos, adipogenic constraint enhancing progression to insulin resistance, pancreatic decompensation and type 2 diabetes, together with placental compromise, all contributing to transgenerational transmission of traits likely to manifest in adult PCOS phenotypes.

View Article and Find Full Text PDF

In utero androgen excess reliably induces polycystic ovary syndrome (PCOS)-like reproductive and metabolic traits in female monkeys, sheep, rats, and mice. In humans, however, substantial technical and ethical constraints on fetal sampling have curtailed safe, pathogenic exploration during gestation. Evidence consistent with in utero origins for PCOS in humans has thus been slow to amass, but the balance now leans toward developmental fetal origins.

View Article and Find Full Text PDF

Developmental origins of adult disease (DoHAD) refers to critical gestational ages during human fetal development and beyond when the endocrine metabolic status of the mother can permanently program the physiology and/or morphology of the fetus, modifying its susceptibility to disease after birth. The aim of this review is to address how DoHAD plays an important role in the phenotypic expression of polycystic ovary syndrome (PCOS), the most common endocrinopathy of women characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. Clinical studies of PCOS women are integrated with findings from relevant animal models to show how intergenerational transmission of these central components of PCOS are programmed through an altered maternal endocrine-metabolic environment that adversely affects the female fetus and long-term offspring health.

View Article and Find Full Text PDF

In both human and animals, in utero exposure to bisphenol A (BPA), an endocrine-disrupting chemical used in the production of plastics and epoxy resins, has been shown to affect offspring reproductive and metabolic health during adult life. We hypothesized that the effect of prenatal exposure to environmentally relevant doses of BPA will be evident during fetal organogenesis and fetal/postnatal growth trajectory. Pregnant ewes were administered BPA subcutaneously from 30 to 90 days of gestation (term 147 days).

View Article and Find Full Text PDF

Maternal PCOS status may negatively influence offspring infant and childhood growth, cardiometabolic health, reproductive health, and neurodevelopment. Current findings across studies are divergent, often because of small numbers of subjects, as well as heterogeneous selection criteria, ethnicities, and definitions of control groups. Coexisting maternal obesity, pregnancy complications, and comorbidity make it difficult to identify the contribution of maternal PCOS.

View Article and Find Full Text PDF