Publications by authors named "David Gubb"

Recent analyses in flies, mice, zebrafish, and humans showed that mutations in prickle orthologs result in epileptic phenotypes, although the mechanism responsible for generating the seizures was unknown. Here, we show that Prickle organizes microtubule polarity and affects their growth dynamics in axons of Drosophila neurons, which in turn influences both anterograde and retrograde vesicle transport. We also show that enhancement of the anterograde transport mechanism is the cause of the seizure phenotype in flies, which can be suppressed by reducing the level of either of two Kinesin motor proteins responsible for anterograde vesicle transport.

View Article and Find Full Text PDF

Members of the serpin superfamily of proteins have been found in all living organisms, although rarely in bacteria or fungi. They have been extensively studied in mammals, where many rapid physiological responses are regulated by inhibitory serpins. In addition to the inhibitory serpins, a large group of noninhibitory proteins with a conserved serpin fold have also been identified in mammals.

View Article and Find Full Text PDF

The Drosophila genome encodes 29 serpins, most of unknown function. We show here that Spn1 is an active protease inhibitor of the serpin superfamily. Spn1 inhibits trypsin in vitro and regulates the Toll-mediated immune response in vivo.

View Article and Find Full Text PDF

Proteolytic signalling cascades control a wide range of physiological responses. In order to respond rapidly, protease activity must be maintained at a basal level: the component zymogens must be sequentially activated and actively degraded. At the same time, signalling cascades must respond precisely: high target specificity is required.

View Article and Find Full Text PDF

Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor.

View Article and Find Full Text PDF

Background: The Drosophila melanogaster genome contains 29 serpin genes, 12 as single transcripts and 17 within 6 gene clusters. Many of these serpins have a conserved "hinge" motif characteristic of active proteinase inhibitors. However, a substantial proportion (42%) lacks this motif and represents non-inhibitory serpin-fold proteins of unknown function.

View Article and Find Full Text PDF

The humoral response to fungal and Gram-positive infections is regulated by the serpin-family inhibitor, Necrotic. Following immune-challenge, a proteolytic cascade is activated which signals through the Toll receptor. Toll activation results in a range of antibiotic peptides being synthesised in the fat-body and exported to the haemolymph.

View Article and Find Full Text PDF

Prickle-Spiny-Legs (Pk) is an essential component of the planar cell polarity (PCP) pathway, together with Frizzled (Fz) and Dishevelled (Dsh). A role for Pk was proposed to mediate feedback amplification of asymmetric Fz/Dsh activity across cell boundaries, ensuring a single prehair initiates at each distal vertex. Here we show that apical localisation of Pk(Pk) and Pk(Sple) isoforms are mutually independent and regulated by the C-terminal domain.

View Article and Find Full Text PDF

The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes.

View Article and Find Full Text PDF

We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering approximately 77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks.

View Article and Find Full Text PDF

Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily.

View Article and Find Full Text PDF

Necrotic is a member of the serine protease inhibitor or serpin superfamily. It is a potent inhibitor of elastase and chymotrypsin type proteases and is responsible for regulating the anti-fungal response in Drosophila melanogaster. Necrotic contains three basic lysine residues within the D-helix that are homologous to those found in the heparin-binding domain of antithrombin and heparin co-factor II.

View Article and Find Full Text PDF

The Drosophila Necrotic protein is a serine proteinase inhibitor, which regulates the Toll-mediated innate immune response. Necrotic specifically inhibits an extracellular serine proteinase cascade leading to activation of the Toll ligand, Spätzle. Necrotic carries a polyglutamine extension amino-terminal to the core serpin structure.

View Article and Find Full Text PDF

We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb.

View Article and Find Full Text PDF

Polymerization of members of the serpin superfamily underlies diseases as diverse as cirrhosis, angioedema, thrombosis and dementia. The Drosophila serpin Necrotic controls the innate immune response and is homologous to human alpha(1)-antitrypsin. We show that necrotic mutations that are identical to the Z-deficiency variant of alpha(1)-antitrypsin form urea-stable polymers in vivo.

View Article and Find Full Text PDF

Drosophila responds to Gram-negative infections by mounting an immune response that depends on components of the IMD pathway. We recently showed that imd encodes a protein with a death domain with high similarity to that of mammalian RIP. Using a two-hybrid screen in yeast, we have isolated the death protein dFADD as a molecule that associates with IMD.

View Article and Find Full Text PDF

Necrotic (Nec) is an important component of the proteolytic cascade that activates the Toll-mediated immune response in Drosophila. The Nec protein is a member of the serpin (SERine Protease INhibitor) superfamily and is thought to regulate the cascade by inhibiting the serine protease Persephone. Nec was expressed in Escherichia coli, and the purified protein folded to the active native conformation required for protease inhibitory activity.

View Article and Find Full Text PDF

Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization.

View Article and Find Full Text PDF