Publications by authors named "David Grajales"

Purpose: Cancer confirmation in the operating room (OR) is crucial to improve local control in cancer therapies. Histopathological analysis remains the gold standard, but there is a lack of real-time in situ cancer confirmation to support margin confirmation or remnant tissue. Raman spectroscopy (RS), as a label-free optical technique, has proven its power in cancer detection and, when integrated into a robotic assistance system, can positively impact the efficiency of procedures and the quality of life of patients, avoiding potential recurrence.

View Article and Find Full Text PDF

Significance: The diagnosis of prostate cancer (PCa) and focal treatment by brachytherapy are limited by the lack of precise intraoperative information to target tumors during biopsy collection and radiation seed placement. Image-guidance techniques could improve the safety and diagnostic yield of biopsy collection as well as increase the efficacy of radiotherapy.

Aim: To estimate the accuracy of PCa detection using in situ Raman spectroscopy (RS) in a pilot in-human clinical study and assess biochemical differences between in vivo and ex vivo measurements.

View Article and Find Full Text PDF

Background And Purpose: Advances in high-dose-rate brachytherapy to treat prostate cancer hinge on improved accuracy in navigation and targeting while optimizing a streamlined workflow. Multimodal image registration and electromagnetic (EM) tracking are two technologies integrated into a prototype system in the early phase of clinical evaluation. We aim to report on the system's accuracy and workflow performance in support of tumor-targeted procedures.

View Article and Find Full Text PDF

Purpose: Transrectal ultrasound (TRUS) image guidance is the standard of care for diagnostic and therapeutic interventions in prostate cancer (PCa) patients, but can lead to high false-negative rates, compromising downstream effectiveness of therapeutic choices. A promising approach to improve in-situ detection of PCa lies in using the optical properties of the tissue to discern cancer from healthy tissue. In this work, we present the first in-situ image-guided navigation system for a spatially tracked Raman spectroscopy probe integrated in a PCa workflow, capturing the optical tissue fingerprint.

View Article and Find Full Text PDF