Publications by authors named "David Golan"

Implementation of clinically useful research discoveries in the academic environment is challenged by limited funding for early phase proof-of-concept studies and inadequate expertise in product development and commercialization. To address these limitations, the National Institutes of Health (NIH) established the National Centers for Accelerated Innovations (NCAI) program in 2013. Three centers competed successfully for awards through this mechanism.

View Article and Find Full Text PDF

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene-trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn's disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL).

View Article and Find Full Text PDF

In the last decade, noninvasive prenatal diagnosis (NIPD) has emerged as an effective procedure for early detection of inherited diseases during pregnancy. This technique is based on using cell-free DNA (cfDNA) and fetal cfDNA (cffDNA) in maternal blood, and hence, has minimal risk for the mother and fetus compared with invasive techniques. NIPD is currently used for identifying chromosomal abnormalities (in some instances) and for single-gene disorders (SGDs) of paternal origin.

View Article and Find Full Text PDF

Previous studies have prioritized trait-relevant cell types by looking for an enrichment of genome-wide association study (GWAS) signal within functional regions. However, these studies are limited in cell resolution by the lack of functional annotations from difficult-to-characterize or rare cell populations. Measurement of single-cell gene expression has become a popular method for characterizing novel cell types, and yet limited work has linked single-cell RNA sequencing (RNA-seq) to phenotypes of interest.

View Article and Find Full Text PDF

Commercializing innovations in academic environments is notoriously challenging. Here, we describe the progress of the NIH Centers for Accelerated Innovations program — initiated in 2013 to address these challenges — which we believe could help set a new standard for the early-stage commercialization of biomedical innovations in academic environments.

View Article and Find Full Text PDF

Detection of recent natural selection is a challenging problem in population genetics. Here we introduce the singleton density score (SDS), a method to infer very recent changes in allele frequencies from contemporary genome sequences. Applied to data from the UK10K Project, SDS reflects allele frequency changes in the ancestors of modern Britons during the past ~2000 to 3000 years.

View Article and Find Full Text PDF

Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions.

View Article and Find Full Text PDF

Cis-regulatory elements such as transcription factor (TF) binding sites can be identified genome-wide, but it remains far more challenging to pinpoint genetic variants affecting TF binding. Here, we introduce a pooling-based approach to mapping quantitative trait loci (QTLs) for molecular-level traits. Applying this to five TFs and a histone modification, we mapped thousands of cis-acting QTLs, with over 25-fold lower cost compared to standard QTL mapping.

View Article and Find Full Text PDF

The proliferation of normal cells is inhibited at confluence, but the molecular basis of this phenomenon, known as contact-dependent inhibition of proliferation, is unclear. We previously identified the neurofibromatosis type 2 (NF2) tumor suppressor Merlin as a critical mediator of contact-dependent inhibition of proliferation and specifically found that Merlin inhibits the internalization of, and signaling from, the epidermal growth factor receptor (EGFR) in response to cell contact. Merlin is closely related to the membrane-cytoskeleton linking proteins Ezrin, Radixin, and Moesin, and localization of Merlin to the cortical cytoskeleton is required for contact-dependent regulation of EGFR.

View Article and Find Full Text PDF

Motivation: The study of RNA virus populations is a challenging task. Each population of RNA virus is composed of a collection of different, yet related genomes often referred to as mutant spectra or quasispecies. Virologists using deep sequencing technologies face major obstacles when studying virus population dynamics, both experimentally and in natural settings due to the relatively high error rates of these technologies and the lack of high performance pipelines.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs), also called common variant association studies (CVASs), have uncovered thousands of genetic variants associated with hundreds of diseases. However, the variants that reach statistical significance typically explain only a small fraction of the heritability. One explanation for the "missing heritability" is that there are many additional disease-associated common variants whose effects are too small to detect with current sample sizes.

View Article and Find Full Text PDF

For predicting genetic risk, we propose a statistical approach that is specifically adapted to dealing with the challenges imposed by disease phenotypes and case-control sampling. Our approach (termed Genetic Risk Scores Inference [GeRSI]), combines the power of fixed-effects models (which estimate and aggregate the effects of single SNPs) and random-effects models (which rely primarily on whole-genome similarities between individuals) within the framework of the widely used liability-threshold model. We demonstrate in extensive simulation that GeRSI produces predictions that are consistently superior to current state-of-the-art approaches.

View Article and Find Full Text PDF

The organization of the plasma membrane is both highly complex and highly dynamic. One manifestation of this dynamic complexity is the lateral mobility of proteins within the plane of the membrane, which is often an important determinant of intermolecular protein-binding interactions, downstream signal transduction, and local membrane mechanics. The mode of membrane protein mobility can range from random Brownian motion to immobility and from confined or restricted motion to actively directed motion.

View Article and Find Full Text PDF

In high-throughput sequencing experiments, the number of reads mapping to a genomic region, also known as the "coverage" or "coverage depth," is often used as a proxy for the abundance of the underlying genomic region in the sample. The abundance, in turn, can be used for many purposes including calling SNPs, estimating the allele frequency in a pool of individuals, identifying copy number variations, and identifying differentially expressed shRNAs in shRNA-seq experiments.In this chapter we describe the fundamentals of statistical modeling of coverage depth and discuss the problems of estimation and inference in the relevant experimental scenarios.

View Article and Find Full Text PDF

Motivation: The importance of fast and affordable DNA sequencing methods for current day life sciences, medicine and biotechnology is hard to overstate. A major player is Ion Torrent, a pyrosequencing-like technology which produces flowgrams--sequences of incorporation values--which are converted into nucleotide sequences by a base-calling algorithm. Because of its exploitation of ubiquitous semiconductor technology and innovation in chemistry, Ion Torrent has been gaining popularity since its debut in 2011.

View Article and Find Full Text PDF

Several lines of evidence indicate that sequence alterations within microRNA (miRNA)-binding sites can modify the binding to its target gene resulting in altered expression patterns. We hypothesized that a single nucleotide polymorphism (SNP) located in the miR-515-5p binding site of igf-1r gene may alter IGF-1R regulation, with consequent effects on breast cancer risk in BRCA1 mutation carriers. Computational prediction revealed that the rs28674628 SNP in the igf-1r 3' UTR is located within a predicted binding site for miR-515-5p.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus type 16 E7, which targets pRb for degradation.

View Article and Find Full Text PDF

Sharing sequencing data sets without identifiers has become a common practice in genomics. Here, we report that surnames can be recovered from personal genomes by profiling short tandem repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases. We show that a combination of a surname with other types of metadata, such as age and state, can be used to triangulate the identity of the target.

View Article and Find Full Text PDF

Macrophages migrate to sites of insult during normal inflammatory responses. Integrins guide such migration, but the transmission of signals from integrins into the requisite cytoskeletal changes is poorly understood. We have discovered that the hematopoietic adaptor protein Skap2 is necessary for macrophage migration, chemotaxis, global actin reorganization and local actin reorganization upon integrin engagement.

View Article and Find Full Text PDF

Impairment of endothelial barrier function is implicated in many vascular and inflammatory disorders. One prevalent mechanism of endothelial dysfunction is an increase in reactive oxygen species under oxidative stress. Previous reports have demonstrated that hydrogen peroxide (H(2)O(2)), a highly stable reactive oxygen species that modulates physiological signaling pathways, also enhances endothelial permeability, but the mechanism of this effect is unknown.

View Article and Find Full Text PDF

Motivation: Despite the rapid decline in sequencing costs, sequencing large cohorts of individuals is still prohibitively expensive. Recently, several sophisticated pooling designs were suggested that can identify carriers of rare alleles in large cohorts with a significantly smaller number of pools, thus dramatically reducing the cost of such large-scale sequencing projects. These approaches use combinatorial pooling designs where each individual is either present or absent from a pool.

View Article and Find Full Text PDF

Short tandem repeats (STRs) have a wide range of applications, including medical genetics, forensics, and genetic genealogy. High-throughput sequencing (HTS) has the potential to profile hundreds of thousands of STR loci. However, mainstream bioinformatics pipelines are inadequate for the task.

View Article and Find Full Text PDF