Predicting phenotypes from genomic data is a key goal in genetics, but for most complex phenotypes, predictions are hampered by incomplete genotype-to-phenotype mapping. Here, we describe a more attainable approach than quantitative predictions, which is aimed at qualitatively predicting phenotypic differences. Despite incomplete genotype-to-phenotype mapping, we show that it is relatively easy to determine which of two individuals has a greater phenotypic value.
View Article and Find Full Text PDFMeasuring allele-specific expression in interspecies hybrids is a powerful way to detect cis-regulatory changes underlying adaptation. However, it remains difficult to identify genes most likely to explain species-specific traits. Here, we outline a simple strategy that leverages population-scale allele-specific RNA-seq data to identify genes that show constrained cis-regulation within species yet show divergence between species.
View Article and Find Full Text PDFMucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper.
View Article and Find Full Text PDFThe Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants.
View Article and Find Full Text PDFGene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species.
View Article and Find Full Text PDFWe report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants.
View Article and Find Full Text PDFChanges in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans.
View Article and Find Full Text PDFDenisovans are an extinct group of humans whose morphology remains unknown. Here, we present a method for reconstructing skeletal morphology using DNA methylation patterns. Our method is based on linking unidirectional methylation changes to loss-of-function phenotypes.
View Article and Find Full Text PDFAnalyzing the conditions in which past individuals lived is key to understanding the environments and cultural transitions to which humans had to adapt. Here, we suggest a methodology to probe into past environments, using reconstructed premortem DNA methylation maps of ancient individuals. We review a large body of research showing that differential DNA methylation is associated with changes in various external and internal factors, and propose that loci whose DNA methylation level is environmentally responsive could serve as markers to infer about ancient daily life, diseases, nutrition, exposure to toxins, and more.
View Article and Find Full Text PDFOne of the biggest challenges in studying how genes work is understanding their effect on the physiology and anatomy of the body. Existing tools try to address this using indirect features, such as expression levels and biochemical pathways. Here, we present Gene ORGANizer (geneorganizer.
View Article and Find Full Text PDFA recent study conducted the first genome-wide scan for selection in Inuit from Greenland using single nucleotide polymorphism chip data. Here, we report that selection in the region with the second most extreme signal of positive selection in Greenlandic Inuit favored a deeply divergent haplotype that is closely related to the sequence in the Denisovan genome, and was likely introgressed from an archaic population. The region contains two genes, WARS2 and TBX15, and has previously been associated with adipose tissue differentiation and body-fat distribution in humans.
View Article and Find Full Text PDFPluripotent self-renewing embryonic stem cells (ESCs) have been the focus of a growing number of high-throughput experiments, revealing the genome-wide locations of hundreds of transcription factors and histone modifications. While most of these datasets were used in a specific context, all datasets combined offer a comprehensive view of chromatin characteristics and regulatory elements that govern cell states. Here, using hundreds of datasets in ESCs, we generated colocalization maps of chromatin proteins and modifications, and built a discovery pipeline for regulatory proteins of gene families.
View Article and Find Full Text PDFRecent years have witnessed the rise of ancient DNA (aDNA) technology, allowing comparative genomics to be carried out at unprecedented time resolution. While it is relatively straightforward to use aDNA to identify recent genomic changes, it is much less clear how to utilize it to study changes in epigenetic regulation. Here we review recent works demonstrating that highly degraded aDNA still contains sufficient information to allow reconstruction of epigenetic signals, including DNA methylation and nucleosome positioning maps.
View Article and Find Full Text PDFAncient DNA sequencing has recently provided high-coverage archaic human genomes. However, the evolution of epigenetic regulation along the human lineage remains largely unexplored. We reconstructed the full DNA methylation maps of the Neandertal and the Denisovan by harnessing the natural degradation processes of methylated and unmethylated cytosines.
View Article and Find Full Text PDFHistones, the building blocks of eukaryotic chromatin, are essential for genome packaging, function and regulation. However, little is known about their transcriptional regulation. Here we conducted a comprehensive computational analysis, based on chromatin immunoprecipitation-sequencing and -microarray analysis (ChIP-seq and ChIP-chip) data of over 50 transcription factors and histone modifications in mouse embryonic stem cells.
View Article and Find Full Text PDF