Publications by authors named "David Gleerup"

Digital PCR (dPCR) has been used in the field of virology since its inception. Technological innovations in microfluidics more than a decade ago caused a sharp increase in its use. There is an emerging consensus that dPCR now outperforms quantitative PCR (qPCR) in the basic parameters such as precision, sensitivity, accuracy, repeatability and resistance to inhibitors.

View Article and Find Full Text PDF

Digital PCR (dPCR) is a highly accurate technique for the quantification of target nucleic acid(s). It has shown great potential in clinical applications, like tumor liquid biopsy and validation of biomarkers. Accurate classification of partitions based on end-point fluorescence intensities is crucial to avoid biased estimators of the concentration of the target molecules.

View Article and Find Full Text PDF

Background: Accurate methods to assess DNA integrity are needed for many biomolecular methods. A multiplex digital PCR (dPCR) method designed for interspaced target sequences can be used to assess sequence integrity of large DNA strands. The ratio of single positive partitions versus double positive partitions is then used to calculate the sheared DNA strands.

View Article and Find Full Text PDF

Background: Partition classification is a critical step in the digital PCR data analysis pipeline. A range of partition classification methods have been developed, many motivated by specific experimental setups. An overview of these partition classification methods is lacking and their comparative properties are often unclear, likely impacting the proper application of these methods.

View Article and Find Full Text PDF

Introduction: Enzootic pneumonia still causes major economic losses to the intensive pig production. Vaccination against its primary pathogen, , is carried out worldwide to control the disease and minimize clinical signs and performance losses. Nonetheless, the effects of both infection with, and vaccination against on the innate and adaptive immune responses remain largely unknown.

View Article and Find Full Text PDF

The development of an HIV-1 cure is hampered by the existence of a persistent (latent) reservoir that contains a small proportion of replication-competent intact proviruses which refuels viral replication upon treatment discontinuation. Therefore, an accurate evaluation and quantification of these (intact) proviruses is essential to determine the efficacy of HIV-1 cure strategies which aim to eliminate this reservoir. Here, we present two triplex digital PCR assays which resulted from a combination of two existing methods, the IPDA (a 2-colour digital PCR based method) and Q4PCR assays (4 colour qPCR method), and tested the functionality on a three-colour digital PCR platform.

View Article and Find Full Text PDF