Publications by authors named "David Gidoni"

Plant senescence- or PCD-associated nucleases share significant homology with nucleases from different organisms. However, knowledge of their function is limited. Intracellular localization of the Arabidopsis senescence- and PCD-associated nuclease BFN1 was investigated.

View Article and Find Full Text PDF

Chl, the central player in harvesting light energy for photosynthesis, is enzymatically degraded during natural turnover, leaf senescence, fruit ripening or following biotic/abiotic stress induction. The photodynamic properties of Chl and its metabolites call for tight regulation of the catabolic pathway enzymes to avoid accumulation of intermediate breakdown products. Chlorophyllase, the Chl dephytilation enzyme, was previously demonstrated to be an initiator of Chl breakdown when transcriptionally induced to be expressed during ethylene-induced citrus fruit color break or when heterologously expressed in different plant systems.

View Article and Find Full Text PDF

Mitochondria (mt) in plants house about 20 group-II introns, which lie within protein-coding genes required in both organellar genome expression and respiration activities. While in nonplant systems the splicing of group-II introns is mediated by proteins encoded within the introns themselves (known as "maturases"), only a single maturase ORF (matR) has retained in the mitochondrial genomes in plants; however, its putative role(s) in the splicing of organellar introns is yet to be established. Clues to other proteins are scarce, but these are likely encoded within the nucleus as there are no obvious candidates among the remaining ORFs within the mtDNA.

View Article and Find Full Text PDF

The V2 protein of tomato yellow leaf curl geminivirus (TYLCV) functions as an RNA-silencing suppressor that counteracts the innate immune response of the host plant. The host-cell target of V2, however, remains unknown. Here we show that V2 interacts directly with SlSGS3, the tomato homolog of the Arabidopsis SGS3 protein (AtSGS3), which is known to be involved in the RNA-silencing pathway.

View Article and Find Full Text PDF

Hexokinase, a hexose-phosphorylating enzyme, has emerged as a central enzyme in sugar-sensing processes. A few HXK isozymes have been identified in various plant species. These isozymes have been classified into two major groups; plastidic (type A) isozymes located in the plastid stroma and those containing a membrane anchor domain (type B) located mainly adjacent to the mitochondria, but also found in the nucleus.

View Article and Find Full Text PDF

Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves.

View Article and Find Full Text PDF

Four hexokinase (LeHXK1-4) and four fructokinase (LeFRK1-4) genes were identified in tomato plants. Previous GFP fusion studies indicate that the gene product of LeHXK3 is associated with the mitochondria while that of LeHXK4 is located within plastids. In this study we found that the enzyme encoded by the fructokinase gene LeFRK3 is also located within plastids.

View Article and Find Full Text PDF

Previous reports have demonstrated that new Cre recombinase specificities can be developed for symmetrically designed lox mutants through directed evolution. The development of Cre variants that allow the recombination of true asymmetric lox mutant sites has not yet been addressed, however. In the present study, we demonstrate that a mixture of two different site-specific Cre recombinase molecules (wt Cre and a mutant Cre) catalyzes efficient recombination between two asymmetric lox sites in vitro, presumably via formation of a functionally active heterotetrameric complex.

View Article and Find Full Text PDF