Publications by authors named "David Gewirtz"

Article Synopsis
  • * The small molecule AU1, which inhibits the BPTF protein, has been shown to enhance chemotherapy effectiveness in preclinical TNBC models by promoting autophagy.
  • * Research reveals that AU1 also inhibits the P-glycoprotein efflux pump, a key player in drug resistance, indicating its potential as a novel treatment strategy for TNBC.
View Article and Find Full Text PDF

Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide (AEA). Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla has been shown to induce diuretic and natriuretic effects.

View Article and Find Full Text PDF
Article Synopsis
  • mTOR inhibitors like everolimus, temsirolimus, and rapamycin are useful in treating various conditions but can face resistance, limiting their effectiveness.
  • One potential reason for this resistance is the promotion of autophagy, which acts as a survival mechanism for cells and is triggered by inhibiting the mTOR pathway.
  • The review explores the differing roles of autophagy induced by these mTOR inhibitors in tumor models to assess if targeting autophagy could enhance clinical outcomes when used alongside mTOR treatments.
View Article and Find Full Text PDF
Article Synopsis
  • This study explores how androgen deprivation therapies (ADT) induce a temporary state of senescence in prostate cancer (PCa) cells, which can eventually lead to castration resistance and tumor regrowth even without androgens.
  • The use of ABT-263 (navitoclax), a senolytic agent, resulted in increased apoptosis of these senescent PCa cells, thereby prolonging the suppression of tumor growth and improving survival in a mouse model of PCa.
  • Although the combination treatment showed a temporary effect on tumor growth, the findings indicate that this dual approach may help delay or reduce the emergence of castration-resistant PCa, suggesting potential for future therapies. *
View Article and Find Full Text PDF

Estrogen receptor positive (ER) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease.

View Article and Find Full Text PDF

Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics.

View Article and Find Full Text PDF

The advent of HER2-targeted monoclonal antibodies such as trastuzumab has significantly improved the clinical outcomes for patients with breast cancer overexpressing HER2, and more recently also for gastric cancers. However, the development of resistance, as is frequently the case for other antineoplastic modalities, constrains clinical efficacy. Multiple molecular mechanisms and signaling pathways have been investigated for their potential involvement in the development of resistance to HER2-targeted therapies, among which is autophagy.

View Article and Find Full Text PDF
Article Synopsis
  • - Macroautophagy is a complex process that can lead to cell death, influenced by various cell types and stressors, while ferroptosis is a specific kind of cell death related to lipid damage and iron dependency.
  • - Certain types of autophagy, like ferritinophagy and lipophagy, play a role in triggering ferroptotic cell death by degrading protective proteins, whereas others, such as reticulophagy, help protect cells from this damage.
  • - The review seeks to clarify the relationship between autophagy and ferroptosis, focusing on defining terms, outlining key components, discussing experimental techniques, and providing interpretation guidelines for ongoing research.
View Article and Find Full Text PDF
Article Synopsis
  • Even with better treatments, triple-negative breast cancer can come back and is still hard to treat.
  • Researchers found that when they used a special drug called talazoparib with radiation, the cancer cells acted differently and became weaker.
  • They also discovered that another drug, navitoclax, worked really well to kill these weak cancer cells, which could help prevent the cancer from coming back in patients.
View Article and Find Full Text PDF

Androgen receptor targeting remains the primary therapeutic strategy in prostate cancer, encompassing androgen biosynthesis inhibitors and androgen receptor antagonists. While both androgen-receptor-positive and "castration-resistant" prostate cancer are responsive to these approaches, the development of resistance is an almost inevitable outcome leading to the castration-resistant form of the disease. Given that "cytoprotective" autophagy is considered to be a predominant mechanism of resistance to various chemotherapeutic agents as well as to radiation in the cancer literature, the purpose of this review is to evaluate whether autophagy plays a central role in limiting the utility of androgen deprivation therapies in prostate cancer.

View Article and Find Full Text PDF

BRAF-targeted therapies are widely used for the treatment of melanoma patients with BRAF V600 mutations. Vemurafenib, dabrafenib as well as encorafenib have demonstrated substantial therapeutic activity; however, as is the case with other chemotherapeutic agents, the frequent development of resistance limits their efficacy. Autophagy is one tumor survival mechanism that could contribute to BRAF inhibitor resistance, and multiple studies support an association between vemurafenib-induced and dabrafenib-induced autophagy and tumor cell survival.

View Article and Find Full Text PDF

The bromodomain and extra-terminal domain (BET) family inhibitors are small molecules that target the dysregulated epigenetic readers, BRD2, BRD3, BRD4 and BRDT, at various transcription-related sites, including super-enhancers. BET inhibitors are currently under investigation both in pre-clinical cell culture and tumor-bearing animal models, as well as in clinical trials. However, as is the case with other chemotherapeutic modalities, the development of resistance is likely to constrain the therapeutic benefits of this strategy.

View Article and Find Full Text PDF

Breast cancer is the most commonly occurring malignancy in women and the second most common cause of cancer-related deaths. ER breast cancer constitutes approximately 70% of all breast cancer cases. The standard of care for ER breast cancer involves estrogen antagonists such as tamoxifen or fulvestrant in combination with CDK4/6 inhibitors such as palbociclib.

View Article and Find Full Text PDF

PARP inhibitors have proven to be effective in conjunction with conventional therapeutics in the treatment of various solid as well as hematologic malignancies, particularly when the tumors are deficient in DNA repair pathways. However, as the case with other chemotherapeutic agents, their effectiveness is often compromised by the development of resistance. PARP inhibitors have consistently been reported to promote autophagy, a process that maintains cellular homeostasis and acts as an energy source by the degradation and reutilization of damaged subcellular organelles and proteins.

View Article and Find Full Text PDF

Topoisomerase I inhibitors represent a widely used class of antineoplastic agents that promote both single-stranded and double-stranded breaks in the DNA of tumor cells, leading to tumor cell death. Topotecan and irinotecan are the clinically relevant derivatives of the parent drug, camptothecin. As is the case with many if not most anticancer agents, irinotecan and topotecan promote autophagy.

View Article and Find Full Text PDF
Article Synopsis
  • Temozolomide is an oral chemotherapy drug primarily used to treat glioblastoma multiforme and has shown effectiveness in recurrent anaplastic astrocytoma and metastatic melanoma.
  • Resistance to temozolomide significantly limits its effectiveness, particularly in glioblastoma patients, with proposed mechanisms including the development of cytoprotective autophagy.
  • This review discusses the evidence surrounding autophagy as a survival mechanism in tumor cells and suggests that targeting autophagy could enhance the effectiveness of temozolomide and help overcome resistance.
View Article and Find Full Text PDF

Anti-estrogens or aromatase inhibitors in combination with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are the current standard of care for estrogen receptor-positive (ER+) Her-2 negative metastatic breast cancer. Although these combination therapies prolong progression-free survival compared to endocrine therapy alone, the growth-arrested state of residual tumor cells is clearly transient. Tumor cells that escape what might be considered a dormant or quiescent state and regain proliferative capacity often acquire resistance to further therapies.

View Article and Find Full Text PDF

Cisplatin is a potent first-line therapy for many solid malignancies, such as breast, ovarian, lung, testicular, and head and neck cancer. However, acute kidney injury (AKI) is a major dose-limiting toxicity in cisplatin therapy, which often hampers the continuation of cisplatin treatment. The endocannabinoid system, consisting of anandamide (AEA) and 2-arachidonoylglycerol and cannabinoid receptors, participates in different kidney diseases.

View Article and Find Full Text PDF

Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is commonly upregulated in multiple cancer types, including breast cancer. In the present study, evidence is provided in support of the premise that upregulation of the EGFR/MEK1/MAPK1/2 signaling axis during antiestrogen treatment facilitates the escape of breast cancer cells from BimEL‑dependent apoptosis, conferring resistance to therapy. This conclusion is based on the findings that ectopic BimEL cDNA overexpression and confocal imaging studies confirm the pro‑apoptotic role of BimEL in ERα expressing breast cancer cells and that upregulated EGFR/MEK1/MAPK1/2 signaling blocks BimEL pro‑apoptotic action in an antiestrogen‑resistant breast cancer cell model.

View Article and Find Full Text PDF

While endocrine therapy remains the mainstay of treatment for ER-positive, HER2-negative breast cancer, tumor progression and disease recurrence limit the utility of current standards of care. While existing therapies may allow for a prolonged progression-free survival, however, the growth-arrested (essentially dormant) state of residual tumor cells is not permanent and is frequently a precursor to disease relapse. Tumor cells that escape dormancy and regain proliferative capacity also tend to acquire resistance to further therapies.

View Article and Find Full Text PDF

Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein.

View Article and Find Full Text PDF