Publications by authors named "David Geenen"

Bone marrow-derived mesenchymal stem cells (BM-MSC) are reported to induce beneficial effects in the heart following ischemia, but a loss of these cells within hours of implantation could significantly diminish their long-term effect. We hypothesized that early coupling between BM-MSC and ischemic cardiomyocytes through gap junctions (GJ) may play an important role in stem cell survival and retention in the acute phase of myocardial ischemia. To determine the effect of GJ inhibition on murine BM-MSC in vivo, we induced ischemia in mice using 90 min left anterior descending coronary artery (LAD) occlusion followed by BM-MSC implantation and reperfusion.

View Article and Find Full Text PDF

Heart attacks affect more than seven million people worldwide each year. A heart attack, or myocardial infarction, may result in the death of a billion cardiomyocytes within hours. The adult mammalian heart does not have an effective mechanism to replace lost cardiomyocytes.

View Article and Find Full Text PDF

This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (MSC) can be differentiated into myocytes, as well as adipocytes, chondrocytes, and osteocytes in culture. Calcium channels mediate excitation-contraction coupling and are essential for the function of muscle. However, little is known about the expression of calcium channel subunits and calcium handling in stem cells.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a chronic disease characterized by a progressive increase in vasomotor tone, narrowing of the vasculature with structural remodeling, and increase in pulmonary vascular resistance. Current treatment strategies include nitric oxide therapy and methods to increase cGMP-mediated vasodilatation. cGMP-dependent protein kinases (PKG) are known mediators of nitric oxide- and cGMP-induced vasodilatation.

View Article and Find Full Text PDF

Up-regulation and activation of PYK2, a member of the FAK family of protein tyrosine kinases, is involved in the pathogenesis of left ventricular (LV) remodeling and heart failure (HF). PYK2 activation can be prevented by CRNK, the C-terminal domain of PYK2. We previously demonstrated that adenoviral-mediated CRNK gene transfer improved survival and LV function, and slowed LV remodeling in a rat model of coronary artery ligation-induced HF.

View Article and Find Full Text PDF

Understanding the regulation of cardiomyocyte growth is crucial for the management of adverse ventricular remodeling and heart failure. MicroRNA-378 (miR-378) is a newly described member of the cardiac-enriched miRNAs, which is expressed only in cardiac myocytes and not in cardiac fibroblasts. We have previously shown that miR-378 regulates cardiac growth during the postnatal period by direct targeting of IGF1R (Knezevic, I.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 cells were plated on microelectrode arrays and their spontaneous activity and θ was determined from field potential recordings.

View Article and Find Full Text PDF

During development and differentiation, cell type-specific chromatin configurations are set up to facilitate cell type-specific gene expression. Defects in the establishment or the maintenance of the correct chromatin configuration have been associated with diseases ranging from leukemia to muscular dystrophy. The heart expresses many chromatin factors, and we are only beginning to understand their roles in heart development and function.

View Article and Find Full Text PDF

Aims: Excessive alcohol use in the form of binge drinking is associated with many adverse medical outcomes. Using an animal model, the primary objective of this study was to determine the effects of repeated episodes of binge drinking on myocardial structure, blood pressure (BP) and activation of mitogen-activated protein kinases (MAPKs). The effects of carvedilol, a beta-adrenergic blocker, were also examined in this animal model of binge drinking.

View Article and Find Full Text PDF

Our aim was to further elucidate the cardiac lineage development of bone marrow-derived mesenchymal stem cells (MSC) and to identify cells which had the potential for cardiac myogenic differentiation when compared to skeletal muscle satellite (Sk-sat) myogenesis. Unlike Sk-sat, MSC expressed the early cardiac markers Nkx2.5 and GATA4.

View Article and Find Full Text PDF

There is over-whelming evidence that protein phosphorylations regulate cardiac function and remodeling. A wide variety of protein kinases, e.g.

View Article and Find Full Text PDF

We have previously shown that mesenchymal stem cells (MSC) improve function upon integration in ischemic myocardium. We examined whether specific cytokines and growth factors produced by MSCs are able to affect angiogenesis, cellular migration and apoptosis. Conditioned media (CM) was prepared by culturing MSC for 48 hours.

View Article and Find Full Text PDF

Mice expressing the tetracycline transactivator (tTA) transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA) are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions.

View Article and Find Full Text PDF

Myocardial physiology in the aftermath of myocardial infarction (MI) before remodeling is an under-explored area of investigation. Here, we describe the effects of MI on the cardiac sarcomere with focus on the possible contributions of reactive oxygen species. We surgically induced MI in 6-7-month-old female CD1 mice by ligation of the left anterior descending coronary artery.

View Article and Find Full Text PDF

This study was conducted to identify molecular mechanisms which explain interventricular differences in myofilament function in experimental congestive heart failure (CHF). CHF was induced in rats by chronic aortic banding or myocardial infarction for 32-36 weeks. Right and left ventricular (RV, LV) myocytes were mechanically isolated, triton-skinned, and attached to a force transducer and motor arm.

View Article and Find Full Text PDF

Contractile dysfunction is common to many forms of cardiovascular disease. Approaches directed at enhancing cardiac contractility at the level of the myofilaments during heart failure (HF) may provide a means to improve overall cardiovascular function. We are interested in gender-based differences in cardiac function and the effect of sarcomere activation agents that increase contractility.

View Article and Find Full Text PDF

Using an in solution based approach with a sub-proteomic fraction enriched in cardiac sarcomeric proteins; we identified protein abundance in ischemic and non-ischemic regions of rat hearts stressed by acute myocardial ischemia by ligating the left-anterior descending coronary artery in vivo for 1h without reperfusion. Sub-cellular fractionation permitted more in depth analysis of the proteome by reducing the sample complexity. A series of differential centrifugations produced nuclear, mitochondrial, cytoplasmic, microsomal, and sarcomeric enriched fractions of ischemic and non-ischemic tissues.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential, previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage, culture milieu, and enrichment for specific cell subtypes before and during differentiation.

View Article and Find Full Text PDF

We investigated the role of inducible NOS (iNOS) on cardiac function during the development of left ventricular hypertrophy. Hypertrophy was induced by pressure-overload via short-term (2.5 months) or long-term (6.

View Article and Find Full Text PDF

Background: Polycomb-group (PcG) and trithorax-group (trxG) proteins regulate histone methylation to establish repressive and active chromatin configurations at target loci, respectively. These chromatin configurations are passed on from mother to daughter cells, thereby causing heritable changes in gene expression. The activities of PcG and trxG proteins are regulated by a special class of proteins known as Enhancers of trithorax and Polycomb (ETP).

View Article and Find Full Text PDF

There is little direct evidence on the role of myosin regulatory light chain phosphorylation in ejecting hearts. In studies reported here we determined the effects of regulatory light chain (RLC) phosphorylation on in situ cardiac systolic mechanics and in vitro myofibrillar mechanics. We compared data obtained from control nontransgenic mice (NTG) with a transgenic mouse model expressing a cardiac specific nonphosphorylatable RLC (TG-RLC(P-).

View Article and Find Full Text PDF

Introduction: Aldosterone promotes renal fibrosis via the mineralocorticoid receptor (MR), thus contributing to hypertension-induced nephropathy. We investigated whether MR gene expression influences renal fibrosis and MR antagonist response in a two-kidney, one-clip hypertensive rat model.

Materials And Methods: Brown Norway (BN), Lewis, and ACI rats were randomised to spironolactone 20 mg/kg/day or water by gavage, starting four weeks after left renal artery clipping.

View Article and Find Full Text PDF

Adenoviral gene transfer of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a to the hypertrophic heart in vivo has been consistently reported to lead to enhanced myocardial contractility. It is unknown if the faster skeletal muscle isoform, SERCA1, expressed in the whole heart in early failure, leads to similar improvements and whether metabolic requirements are maintained during an adrenergic challenge. In this study, Ad.

View Article and Find Full Text PDF