Increasingly, molecular chemistry and pharmacology are complementing classical studies in the field of archaeology. In this case, we present the results of the chemical study of pipe residues found in the context of an archaeological mission (AROMA mission: Archaeology of the Exercise of Royal and Magico-Religious Power) in the royal palaces of Abomey (Benin), dating from the 17th-19th century. The search for many products was carried out (mainly tobacco, cannabis) but surprisingly only highlighted the presence of caffeine residues.
View Article and Find Full Text PDFIndigo and indirubin are derived from indoxyl molecules, which generally occur as indoxyl glycosides in woad (Isatis tinctoria L.) and other indigo-producing plants. Indoxyl glycosides are biosynthesized from indole via 3-hydroxylation to form indoxyl, followed by one or more glycosylations.
View Article and Find Full Text PDFAs cannabis use increases among reproductive-aged women, there is a growing need to better understand the presence of cannabinoids in milk produced by women using cannabis. It is unclear how concentrations of cannabinoids such as delta-9-tetrahydrocannabinol (Δ-THC) persist in milk after cannabis use and what factors contribute to variation in milk Δ-THC concentrations. Our objectives were to measure cannabinoids in human milk following cannabis abstention, after single and repeated instances of cannabis use, and identify factors contributing to concentration variation.
View Article and Find Full Text PDFObjective: Our primary objective was to understand breastfeeding individuals' decisions to use cannabis. Specifically, we investigated reasons for cannabis use, experiences with healthcare providers regarding use, and potential concerns about cannabis use.
Methods: We collected survey data from twenty breastfeeding participants from Washington and Oregon who used cannabis at least once weekly.
Rootstock selection and crop load adjustment are key practices in apple orchard management; nevertheless, the effects of rootstocks and crop load levels on important physiological processes of the scions, such as photosynthetic performance and carbohydrate accumulation, are still unclear. To investigate the impact of different rootstocks and crop load levels on scion photosynthesis and carbohydrate buildup, in 2020, 'Honeycrisp' trees grafted on rootstocks 'G.41', 'G.
View Article and Find Full Text PDFThe bacterial pathogen Liberibacter asiaticus (CLas) is the causal agent of citrus greening disease. This unusual plant pathogenic bacterium also infects its psyllid host, the Asian citrus psyllid (ACP). To investigate gene expression profiles with a focus on genes involved in infection and circulation within the psyllid host of CLas, RNA-seq libraries were constructed from CLas-infected and CLas-free ACP representing the five different developmental stages, namely, nymphal instars 1-2, 3, and 4-5, and teneral and mature adults.
View Article and Find Full Text PDFPotato () is affected by several viral pathogens with the most economically damaging being potato virus Y (PVY). At least nine biologically distinct variants of PVY are known to attack potato, with necrotic types named PVY and PVY being the most recent additions to the list. So far, the molecular plant-virus interactions underlying this pathogenicity are not fully understood.
View Article and Find Full Text PDFIn 2021 and 2022, virus-like symptoms were observed in several cultivars of industrial hemp (Cannabis sativa) in two fields in central Washington, USA. Affected plants had a range of symptoms at different developmental stages, with young plants having severe stunting with shortened internodes and reduced flower mass. Young leaves of infected plants also showed light green to total yellowing, and twirling with twisting margins (Fig.
View Article and Find Full Text PDFUnlike the bicellular glands characteristic of all known excreting grasses, unique single-celled salt glands were discovered in the only salt tolerant species of the genus Oryza, Oryza coarctata. Salt tolerance has evolved frequently in a large number of grass lineages with distinct difference in mechanisms. Mechanisms of salt tolerance were studied in three species of grasses characterized by salt excretion: C wild rice species Oryza coarctata, and C species Sporobolus anglicus and Urochondra setulosa.
View Article and Find Full Text PDFDiosgenin saponins isolated from species such as exhibit a broad spectrum of pharmacological activities. Diosgenin, the aglycone of diosgenin saponins, is an important starting material for the production of steroidal drugs. However, how plants produce diosgenin saponins and the origin and evolution of the diosgenin saponin biosynthetic pathway remain a mystery.
View Article and Find Full Text PDFMercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported.
View Article and Find Full Text PDFSalicylic acid (SA) is a phytohormone that plays manifold roles in plant growth, defense, and other aspects of plant physiology. The concentration of free SA in plants is fine-tuned by a variety of structural modifications. SA is produced by all land plants, yet it is not known whether its metabolism is conserved in all lineages.
View Article and Find Full Text PDFinfection of wheat () has become an increasing problem in organic wheat agriculture throughout the world. Little is known about how this pathogen alters host metabolism to ensure a successful infection. We investigated how allocates resources from wheat for its growth over the life cycle of the pathogen.
View Article and Find Full Text PDFPursh and L. are two common species within the Scrophulariaceae family that are endemic to North America. Historically, these species were used by indigenous peoples and colonialists to treat sunburn, sunstroke, frostbite, edema, as well as for blood purification, and in women's health.
View Article and Find Full Text PDFPlants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages.
View Article and Find Full Text PDFA particular type of miniature ceramic vessel locally known as "veneneras" is occasionally found during archaeological excavations in the Maya Area. To date, only one study of a collection of such containers successfully identified organic residues through coupled chromatography-mass spectrometry methods. That study identified traces of nicotine likely associated with tobacco.
View Article and Find Full Text PDF'Candidatus Liberibacter asiaticus' ('Ca. L. asiaticus'), the suspected causative agent of citrus greening disease, is one of many phloem-restricted plant pathogens that have not been isolated and grown in an axenic culture.
View Article and Find Full Text PDFPlants deploy a variety of chemical and physical defenses to protect themselves against herbivores and pathogens. Organic farming seeks to enhance these responses by improving soil quality, ultimately altering bottom up regulation of plant defenses. While laboratory studies suggest this approach is effective, it remains unclear whether organic agriculture encourages more-active plant defenses under real-world conditions.
View Article and Find Full Text PDFPlants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education.
View Article and Find Full Text PDFResidues from ancient artifacts can help identify which plant species were used for their psychoactive properties, providing important information regarding the deep-time co-evolutionary relationship between plants and humans. However, relying on the presence or absence of one or several biomarkers has limited the ability to confidently connect residues to particular plants. We describe a comprehensive metabolomics-based approach that can distinguish closely related species and provide greater confidence in species use determinations.
View Article and Find Full Text PDFAntibiotic resistance is a growing concern worldwide and consequently metabolomic tools are being applied increasingly in efforts aimed at identifying new antimicrobial compounds. Marine bacteria-derived compounds have shown great promise in this area. A metabolomics-based study was undertaken to study the diversity of secondary metabolites from marine sediment bacteria isolated from different locations of Hawai'i and Puerto Rico.
View Article and Find Full Text PDFF.a.1 is a novel strain of a fungal plant pathogen capable of preferentially decaying wild oat () caryopses compared with those of wheat ().
View Article and Find Full Text PDF'Candidatus Liberibacter asiaticus' is a fastidious bacterium and a putative agent of citrus greening disease (a.k.a.
View Article and Find Full Text PDF