Vesicular stomatitis virus (VSV) infection of mice via intranasal administration results in a severe encephalitis with rapid activation and proliferation of microglia and astrocytes. We have recently shown that these glial cells express RIG-I and MDA5, cytosolic pattern recognition receptors for viral RNA. However, it is unclear whether VSV can replicate in glial cells or if such replication is required for their inflammatory responses.
View Article and Find Full Text PDFWhile glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation that resident central nervous system (CNS) cells initiate and/or augment inflammation following trauma or infection. We have recently demonstrated that microglia and astrocytes constitutively express nucleotide-binding oligomerization domain-2 (NOD2), a member of the novel nucleotide-binding domain leucine-rich repeat region containing a family of proteins (NLR) that functions as an intracellular receptor for a minimal motif present in all bacterial peptidoglycans. In this study, we have confirmed the functional nature of NOD2 expression in astrocytes and microglia and begun to determine the relative contribution that this NLR makes in inflammatory CNS responses to clinically relevant bacterial pathogens.
View Article and Find Full Text PDFAlthough glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation of the ability of resident CNS cells to initiate and/or augment inflammation following trauma or infection. The tachykinin, substance P (SP), is well known to augment inflammatory responses at peripheral sites and its presence throughout the CNS raises the possibility that this neuropeptide might serve a similar function within the brain. In support of this hypothesis, we have recently demonstrated the expression of high affinity receptors for SP (Neurokinin-1 (NK-1) receptors) on microglia and shown that this tachykinin can significantly elevate bacterially induced inflammatory prostanoid production by isolated cultures of these cells.
View Article and Find Full Text PDF