Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g.
View Article and Find Full Text PDFThousands of mothers are at risk of transmitting mitochondrial diseases to their offspring each year, with the most severe form of these diseases being fatal [1]. With no cure, transmission prevention is the only current hope for decreasing the disease incidence. Current methods of prevention rely on low mutant maternal mitochondrial DNA levels, while those with levels close to or above threshold (>60%) are still at a very high risk of transmission [2].
View Article and Find Full Text PDFThere is increasing recognition of the importance of transformations in nanomaterials across their lifecycle, yet few quantitative examples exist. We examined food-grade silicon dioxide (SiO2) nanomaterials from its source (bulk material providers), occurrence in food products, impacts on human gastrointestinal tract during consumption, and fate at wastewater treatment plants. Based upon XRD, XPS and TEM analysis, pure SiO2 present in multiple food-grade stock SiO2 exhibited consistent morphologies as agglomerates, ranging in size from below 100nm to >500nm, with all primary particle size in the range of 9-26nm and were most likely amorphous SiO2 based upon high resolution TEM.
View Article and Find Full Text PDFBulk- and nano-scale titanium dioxide (TiO2) has found use in human food products for controlling color, texture, and moisture. Once ingested, and because of their small size, nano-scale TiO2 can interact with a number of epithelia that line the human gastrointestinal tract. One such epithelium responsible for nutrient absorption is the small intestine, whose constituent cells contain microvilli to increase the total surface area of the gut.
View Article and Find Full Text PDFNanoparticles hold great promise in cell biology and medicine due to the inherent physico-chemical properties when these materials are synthesized on the nanoscale. Moreover, their small size, and the ability to functionalize the outer nanoparticle surface makes them an ideal vector suited to traverse a number of physical barriers in the human body. While nanoparticles hold great promise for applications in cell biology and medicine, their downfall is the toxicity that accompanies exposure to biological systems.
View Article and Find Full Text PDFIron oxide nanoparticles offer unique possibilities due to the change in their physico-chemical parameters when synthesized on the nanoscale (10(-9) m) compared to their bulk forms. While novel uses exist for these materials when synthesized as nanoparticles, their unintended effects on the human body and specifically during pregnancy remain ill defined. In this study, an iron oxide nanoparticle, α-Fe2O3, was employed and the potential toxicity due to exposure was assessed in the widely used model human placental cell line BeWo b30.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
January 2013
Molecular scaffolds in the mammalian egg are capable of tethering specific proteins involved in regulation of early development. Scaffolds can take the form of cytoskeletal elements, or involve proteins such as MARCKs or RACKSs during important cellular transitions in the egg. Moreover, with each cellular transition (i.
View Article and Find Full Text PDFIn a recent work published in Particle and Fibre Toxicology by Fisichella and coworkers investigating surface-modified TiO2 nanoparticle exposure in a model human intestinal epithelium (Caco-2), albeit degraded to mimic conditions in the gut and exposure to natural sunlight, purportedly resulted in no toxic effects. The authors (Fisichella et al.) claim to have confirmed the results of a 2010 report by Koeneman et al.
View Article and Find Full Text PDFThis study examined the effects of different-sized nanoparticles on potential cytotoxicity in intestinal epithelia. Three sizes of hematite nanoparticles were used for the study at a 10 ppm concentration: 17, 53, and, 100 nm. Results indicate that, of the hematite nanoparticles tested, 17 nm was more toxic to the epithelial integrity than 53 or 100 nm.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
February 2012
In the somatic cell, the mitotic spindle apparatus is centrosomal, and several isoforms of protein kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is still unclear. Other protein kinases such as, glycogen synthase kinase 3β (GSK3β) have also been shown to be associated with the mitotic spindle apparatus. In this study, we show the enrichment of active (phosphorylated) PKCζ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells.
View Article and Find Full Text PDFThe increasing applications of engineered nanomaterials nowadays have elevated the potential of human exposure through various routes including inhalation, skin penetration and digestion. To date there is scarce information on a quantitative description of the interactions between nanoparticles (NPs) and cell surfaces and the detrimental effects from the exposure. The purpose of this work was to study in vitro exposure of Caco-2 cells to hematite (alpha-Fe(2)O(3)) NPs and to determine the particle size effects on the adsorption behaviors.
View Article and Find Full Text PDFProtein kinase C (PKC) isotypes have been implicated in a number of key steps during gametogenesis, fertilization, and early development. The 11-member family of PKC isotypes, many with different cofactor requirements for activation, can provide for differential activation of the specific kinases. In addition the enrichment of particular PKC isotypes to unique locations within gametes, zygotes, and early embryos likely promotes specific substrate interactions.
View Article and Find Full Text PDFThe increasing use of nanomaterials in healthcare and industrial products heightens the possibility of their ingestion by humans, other mammals, and fish. While toxicity of many nanomaterials has recently been studied, reports of non-lethal effects of nanomaterials remain ill-defined. This study investigates possible pathways by which nanoparticles, titanium dioxide (TiO(2)), could cross the epithelium layer by employing both toxicity and mechanistic studies.
View Article and Find Full Text PDFEngineered nanoparticles are increasingly used in consumer products. While the potential of these products hold great promise, it is not known what potential toxic effects these nanomaterials may have on human health. There is a need to develop affordable, systematic, short-term in vitro assays aimed at allowing rapid assessment of potential toxicity.
View Article and Find Full Text PDFUpon fertilization, the mammalian egg undergoes a precise series of signaling events that orchestrate its conversion into a zygote. Mouse eggs contain acentrosomal spindle poles when arrested at meiotic metaphase II. The meiotic spindle is thought to provide a scaffold that mediates spatial and temporal regulation of the signaling pathways orchestrating post-fertilization events.
View Article and Find Full Text PDFThis paper presents a shape-based approach in extracting thin structures, such as lines and sheets, from three-dimensional (3D) biomedical images. Of particular interest is the capability to recover cellular structures, such as microtubule spindle fibers and plasma membranes, from laser scanning confocal microscopic (LSCM) data. Hessian-based shape methods are reviewed.
View Article and Find Full Text PDFSeveral isotypes of protein kinase C (PKC) have been reported to be expressed in mammalian eggs, but it is unknown whether these isotypes have a common function in the egg during or within the first few hours of fertilization. Here we show that the isotypes of PKC exhibit distinct patterns of enrichment immediately after mouse egg activation. PKCalpha and gamma accumulate in the egg cortex 25 min post-activation, while only PKCalpha accumulates at the contractile ring of the forming second polar body about 1.
View Article and Find Full Text PDFFailure of neural recording electrodes implanted in the brain is often attributed to the formation of glial scars around the implant. A leading cause of scar formation is the electrode material. Described below is an approach to evaluate the biocompatibility of novel electrode materials in a representative three-dimensional model.
View Article and Find Full Text PDFCellular scaffolds serve as structural components to which various elements of signal transduction pathways can be associated. The association of components on a scaffold can have several important functions, for example they can: 1) associate upstream regulatory components in a cascade that can increase the speed of response to a stimulus; 2) restrict access of substrates to enzymes associated with the scaffold; 3) permit cross talk between distinct signaling pathways, and; 4) aid in the establishment of cellular polarity. The conversion of the mammalian egg into the zygote requires many rapid alterations during a distinct time frame to mediate the biochemical and structural changes that occur.
View Article and Find Full Text PDFProteins of the detergent-resistant cytoskeleton fraction and the detergent-soluble fraction from Xenopus oocytes and embryos are examined using a procedure which allows rapid and uniform extraction of tissues and large, single cells. SDS-polyacrylamide gels reveal only a few prominent cytoskeletal proteins in the early embryo, however qualitatively different proteins begin to appear after gastrulation. Incorporation of [ S]-methionine into newly synthesized proteins indicates that there is synthesis and assembly of proteins into the cytoskeleton, but the amount remains low until after gastrulation.
View Article and Find Full Text PDFPoly(A)RNA and tubulin mRNA are localized in the periphery of Xenopus oocytes and become delocalized during meiotic maturation. Delocalization of this RNA can be triggered by incubation in agents which reduce entry of calcium ions into the cell (e.g.
View Article and Find Full Text PDF