Publications by authors named "David G Anders"

Introduction: This study examined hydroxyurea usage in young children with sickle cell anemia within New York State (NYS). The cohort was 273 children with sickle cell anemia born in NYS in 2006-2009 and enrolled essentially continuously in Medicaid for the first 4 years of life.

Methods: Medicaid data were used to examine hydroxyurea usage in this group by age at first prescription fill, persistence, region, treatment institution, and year.

View Article and Find Full Text PDF

Cyclooxygenase-2 (COX-2) is a cellular enzyme in the eicosanoid synthetic pathway that mediates the synthesis of prostaglandins from arachidonic acid. The eicosanoids function as critical regulators of a number of cellular processes, including the acute and chronic inflammatory response, hemostasis, and the innate immune response. Human cytomegalovirus (HCMV), which does not encode a viral COX-2 isoform, has been shown to induce cellular COX-2 expression.

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) UL57 gene lies adjacent to HCMV oriLyt, from which it is separated by an organizationally conserved, mostly noncoding region that is thought to both regulate UL57 expression and activate oriLyt function. However, the UL57 promoter has not been studied. We determined the 5' ends of UL57 transcripts toward an understanding of the potential relationship between UL57 expression and oriLyt activation.

View Article and Find Full Text PDF

The complete DNA sequence of rhesus cytomegalovirus (RhCMV) strain 68-1 was determined with the whole-genome shotgun approach on virion DNA. The RhCMV genome is 221,459 bp in length and possesses a 49% G+C base composition. The genome contains 230 potential open reading frames (ORFs) of 100 or more codons that are arranged colinearly with counterparts of previously sequenced betaherpesviruses such as human cytomegalovirus (HCMV).

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) UL70, UL102, and UL105 genes are predicted to encode essential proteins that assemble the replicative helicase-primase complex based on sequence and genome position similarities to putative herpes simplex virus type 1 (HSV-1) counterparts. Consistent with this prediction, they are required for transient complementation of DNA synthesis. However, little is known about their physical interactions and biochemical activities, primarily because of their restricted expression in HCMV-infected cells.

View Article and Find Full Text PDF