Publications by authors named "David G Alberg"

Trypanothione reductase (TR) is found in the trypanosomatid parasites, where it catalyses the NADPH-dependent reduction of the glutathione analogue, trypanothione, and is a key player in the parasite's defenses against oxidative stress. TR is a promising target for the development of antitrypanosomal drugs; here, we report our synthesis and evaluation of compounds 3-5 as low micromolar Trypanosoma cruzi TR inhibitors. Although 4 and 5 were designed as potential irreversible inhibitors, these compounds, as well as 3, displayed reversible competitive inhibition.

View Article and Find Full Text PDF

Transition-metal-free formal Sonogashira coupling and alpha-carbonyl arylation reactions have been developed. These transformations are based on the nucleophilic aromatic substitution (S(N)Ar) of beta-carbonyl sulfones to electron-deficient aryl fluorides, producing a key intermediate that, depending on the reaction conditions, gives the aromatic alkynes or alpha-aryl carbonyl compounds. The development of these reactions is presented and, based on investigations under basic and acidic conditions, mechanisms have been proposed.

View Article and Find Full Text PDF

The aldol reaction of the endogeneous compounds acetone and methylglyoxal has been studied using organocatalysis in relation to biologically relevant non-enzymatic reactions. Under preparative conditions, 3-hydroxy-2,5-hexadione, known as Henze's ketol, is formed in high yield and with enantioselectivities up to 88% ee. Furthermore, Henze's ketol is also formed under simulated physiological conditions at micromolar scale, indicating that this reaction might take place in living organisms.

View Article and Find Full Text PDF

Experimental data on the stereoselectivity of base-catalyzed 1,2-elimination reactions that produce conjugated carbonyl compounds are scarce in spite of the importance of these reactions in organic and biochemistry. As part of a comprehensive study in this area, we have synthesized stereospecifically-deuterated beta-tosyloxybutanoate esters and thioesters and studied the stereoselectivity of their elimination reactions under non-ion pairing conditions. With the availability of both the (2R*,3R*) and (2R*,3S*) diastereomers the innate stereoselectivity could be determined unambiguously.

View Article and Find Full Text PDF

The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase or EPSPS) is best known as the target of the herbicide glyphosate. EPSPS is also considered an attractive target for the development of novel antibiotics since the pathogenicity of many microorganisms depends on the functionality of the shikimate pathway. Here, we have investigated the inhibitory potency of stable fluorinated or phosphonate-based analogues of the tetrahedral reaction intermediate (TI) in a parallel study utilizing class I (glyphosate-sensitive) and class II (glyphosate-tolerant) EPSPS.

View Article and Find Full Text PDF

Trypanothione reductase (TR) catalyzes the NADPH-dependent reduction of trypanothione disulfide (1). TR plays a central role in the trypanosomatid parasite's defense against oxidative stress and has emerged as a promising target for antitrypanosomal drugs. We describe the synthesis and activity of dethiotrypanothione and analogues (2-4) as inhibitors of Trypanosoma cruzi TR.

View Article and Find Full Text PDF

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway and is the target of the broad-spectrum herbicide glyphosate. Since the functionality of the shikimate pathway is vital not only for plants but also for microorganisms, EPSPS is considered a prospective target for the development of novel antibiotics. We have kinetically analyzed and determined the crystal structures of Escherichia coli EPSPS inhibited by (R)- and (S)-configured phosphonate analogues of the tetrahedral reaction intermediate.

View Article and Find Full Text PDF