Publications by authors named "David G Adams"

Background: Massive fruit losses are caused by microbial pathogens of unknown identities. Therefore, ecofriendly biocontrol measures are well sought after, and biogenic silver nanoparticles are plausible candidates. Here we investigate the antimicrobial effect of three different sized AgNPs samples on those pathogens.

View Article and Find Full Text PDF

Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H(+) Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family.

View Article and Find Full Text PDF

The prokaryote Corynebacterium matruchotii produces calcium phosphate (bone salt) and may serve as a convenient model for examining individual factors relevant to vertebrate calcification. A factor of current clinical uncertainty is silicon. To investigate its possible role in biomineralisation advanced optical (digital deconvolution and 3D fluorescent image rendering) and electron microscopy (EDX microanalysis and elemental mapping) were applied to calcifying microbial colonies grown in graded Si concentrations (0-60mM).

View Article and Find Full Text PDF

For over 25 years it has been known that rotting barley straw can be used to prevent the development of blooms of cyanobacteria and algae in freshwater bodies, although its effectiveness can be variable. The mode of action is still not understood, although a number of hypotheses have been suggested, many of which are supported by little or no experimental evidence. Here, we provide the first experimental confirmation that microbial activity is responsible for the release of either the growth inhibitory fraction, or its precursor, from whole straw, after three or more weeks of decomposition.

View Article and Find Full Text PDF

Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp.

View Article and Find Full Text PDF

Chlorophyll d is a photosynthetic pigment that, based on chemical analyses, has only recently been recognized to be widespread in oceanic and lacustrine environments. However, the diversity of organisms harbouring this pigment is not known. Until now, the unicellular cyanobacterium Acaryochloris marina is the only characterized organism that uses chlorophyll d as a major photopigment.

View Article and Find Full Text PDF

Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels.

View Article and Find Full Text PDF

Heterocyst-forming filamentous cyanobacteria are true multicellular prokaryotes, in which heterocysts and vegetative cells have complementary metabolism and are mutually dependent. The mechanism for metabolite exchange between cells has remained unclear. To gain insight into the mechanism and kinetics of metabolite exchange, we introduced calcein, a 623-Da fluorophore, into the Anabaena cytoplasm.

View Article and Find Full Text PDF

Cyanobacteria are a large group of photosynthetic prokaryotes of enormous environmental importance, being responsible for a large proportion of global CO(2) and N(2) fixation. They form symbiotic associations with a wide range of eukaryotic hosts including plants, fungi, sponges, and protists. The cyanobacterial symbionts are often filamentous and fix N(2) in specialized cells known as heterocysts, enabling them to provide the host with fixed nitrogen and, in the case of non-photosynthetic hosts, with fixed carbon.

View Article and Find Full Text PDF

The filamentous cyanobacterium Nostoc punctiforme forms symbioses with plants. Disruption of the catalytic domain of the N. punctiforme adenylate cyclase (CyaC) significantly increased symbiotic competence, whereas reduced infectivity was observed in a mutant with a disruption close to the N terminus of CyaC.

View Article and Find Full Text PDF

Many filamentous cyanobacteria are motile by gliding, which requires attachment to a surface. There are two main theories to explain the mechanism of gliding. According to the first, the filament is pushed forward by small waves that pass along the cell surface.

View Article and Find Full Text PDF

Hormogonia are the infective agents in many cyanobacterium-plant symbioses. Pilus-like appendages are expressed on the hormogonium surface, and mutations in pil-like genes altered surface piliation and reduced symbiotic competency. This is the first molecular evidence that pilus biogenesis in a filamentous cyanobacterium requires a type IV pilus system.

View Article and Find Full Text PDF

Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2i3h38ff2mpos8iruqovdv76s4i9p7a6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once