Publications by authors named "David G A Morgan"

Cerebrospinal fluid (CSF) circulates through the brain and has a unique composition reflecting the biological processes of the brain. Identifying ageing CSF biomarkers can aid in understanding the ageing process and interpreting CSF protein changes in neurodegenerative diseases. In this study, ovine CSF proteins from young (1-2 year old), middle aged (3-6 year old) and old (7-10 year old) sheep were systemically studied.

View Article and Find Full Text PDF

To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 microg x day(-1) x mouse(-1)) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet.

View Article and Find Full Text PDF

The discovery and optimization of piperidin-4-yl-urea derivatives as MCH-R1 antagonists is herein described. Previous work around the piperidin-4-yl-amides led to the discovery of potent MCH-R1 antagonists. However, high affinity towards the hERG potassium channel proved to be an issue.

View Article and Find Full Text PDF

Herein, we disclose the discovery and optimization of 2-piperidin-4-yl-acetamide derivatives as MCH-R1 antagonists. Structural investigation of piperidin-4-yl-amide and piperidin-4-yl-ureas identified 2-piperidin-4-yl-acetamide-based MCH-R1 antagonists with outstanding in vivo efficacy but flawed with high affinity towards the hERG potassium channel. While existing hERG SAR information was employed to discover highly potent MCH-R1 antagonists with minimized hERG inhibition, additional hurdles prevented their subsequent clinical exploration.

View Article and Find Full Text PDF

A series of 1,3-disubstituted-1H-pyrrole-based antagonists of the human Melanin-Concentrating Hormone Receptor 1 (h-MCH-R1) are reported. High-throughput screening of the AstraZeneca compound collection yielded 1, a hit with moderate affinity towards MCH-R1. Subsequent structural manipulations and SAR analysis served to rationalize potency requirements, and 12 was identified as a novel, functional MCH-R1 antagonist with favorable pharmacokinetic properties.

View Article and Find Full Text PDF

We herein report the optimization of cyclopentane- and cyclohexane-1,3-diamine derivatives as novel and potent MCH-R1 antagonists. Structural modifications of the 2-amino-quinoline and thiophene moieties found in the initial lead compound served to improve its metabolic stability profile and MCH-R1 affinity, and revealed unprecedented SAR when compared to other 2-amino-quinoline-containing MCH-R1 antagonists.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake.

View Article and Find Full Text PDF