Publications by authors named "David Fuard"

Brain tissues demonstrate heterogeneous mechanical properties, which evolve with aging and pathologies. The observation in these tissues of smooth to sharp rigidity gradients raises the question of brain cell responses to both different values of rigidity and their spatial variations, in dependence on the surface chemistry they are exposed to. Here, we used recent techniques of hydrogel photopolymerization to achieve stiffness texturing down to micrometer resolution in polyacrylamide hydrogels.

View Article and Find Full Text PDF

Cell rigidity sensing-a basic cellular process allowing cells to adapt to mechanical cues-involves cell capabilities exerting force on the extracellular environment. In vivo, cells are exposed to multi-scaled heterogeneities in the mechanical properties of the surroundings. Here, we investigate whether cells are able to sense micron-scaled stiffness textures by measuring the forces they transmit to the extracellular matrix.

View Article and Find Full Text PDF

Confining cells on adhesive patterns allows performing robust, weakly dispersed, statistical analysis. A priori, adhesive patterns could be efficient tools to analyze intracellular cell stress fields, in particular when patterns are used to force the geometry of the cytoskeleton. This tool could then be very helpful in deciphering the relationship between the internal architecture of the cells and the mechanical, intracellular stresses.

View Article and Find Full Text PDF

Cell adhesion and migration are strongly influenced by extracellular matrix (ECM) architecture and rigidity, but little is known about the concomitant influence of such environmental signals to cell responses, especially when considering cells of similar origin and morphology, but exhibiting a normal or cancerous phenotype. Using micropatterned polydimethylsiloxane substrates (PDMS) with tunable stiffness (500 kPa, 750 kPa, 2000 kPa) and topography (lines, pillars or unpatterned), we systematically analyse the differential response of normal (3T3) and cancer (SaI/N) fibroblastic cells. Our results demonstrate that both cells exhibit differential morphology and motility responses to changes in substrate rigidity and microtopography.

View Article and Find Full Text PDF