The rapidly growing scale and variety of biomedical data repositories raise important privacy concerns. Conventional frameworks for collecting and sharing human subject data offer limited privacy protection, often necessitating the creation of data silos. Privacy-enhancing technologies (PETs) promise to safeguard these data and broaden their usage by providing means to share and analyze sensitive data while protecting privacy.
View Article and Find Full Text PDFFinding relatives within a study cohort is a necessary step in many genomic studies. However, when the cohort is distributed across multiple entities subject to data-sharing restrictions, performing this step often becomes infeasible. Developing a privacy-preserving solution for this task is challenging owing to the burden of estimating kinship between all the pairs of individuals across data sets.
View Article and Find Full Text PDFFinding relatives within a study cohort is a necessary step in many genomic studies. However, when the cohort is distributed across multiple entities subject to data-sharing restrictions, performing this step often becomes infeasible. Developing a privacy-preserving solution for this task is challenging due to the significant burden of estimating kinship between all pairs of individuals across datasets.
View Article and Find Full Text PDFProc IEEE Symp Secur Priv
May 2023
Principal component analysis (PCA) is an essential algorithm for dimensionality reduction in many data science domains. We address the problem of performing a federated PCA on private data distributed among multiple data providers while ensuring data confidentiality. Our solution, SF-PCA, is an end-to-end secure system that preserves the confidentiality of both the original data and all intermediate results in a passive-adversary model with up to all-but-one colluding parties.
View Article and Find Full Text PDFAdvances in genomics are increasingly depending upon the ability to analyze large and diverse genomic data collections, which are often difficult to amass due to privacy concerns. Recent works have shown that it is possible to jointly analyze datasets held by multiple parties, while provably preserving the privacy of each party's dataset using cryptographic techniques. However, these tools have been challenging to use in practice due to the complexities of the required setup and coordination among the parties.
View Article and Find Full Text PDFUsing real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics.
View Article and Find Full Text PDFGenotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing genotypes of nearby "tag" variants. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. Here, we developed secure genotype imputation using efficient homomorphic encryption (HE) techniques.
View Article and Find Full Text PDFMedical studies are usually time consuming, cumbersome and extremely costly to perform, and for exploratory research, their results are also difficult to predict a priori. This is particularly the case for rare diseases, for which finding enough patients is difficult and usually requires an international-scale research. In this case, the process can be even more difficult due to the heterogeneity of data-protection regulations, making the data sharing process particularly hard.
View Article and Find Full Text PDF