The Fontan procedure is the definitive palliation for pediatric patients born with single ventricles. Surgical planning for the Fontan procedure has emerged as a promising vehicle toward optimizing outcomes, where pre-operative measurements are used prospectively as post-operative boundary conditions for simulation. Nevertheless, actual post-operative measurements can be very different from pre-operative states, which raises questions for the accuracy of surgical planning.
View Article and Find Full Text PDFVascular atresia are often treated via transcatheter recanalization or surgical vascular anastomosis due to congenital malformations or coronary occlusions. The cellular response to vascular anastomosis or recanalization is, however, largely unknown and current techniques rely on restoration rather than optimization of flow into the atretic arteries. An improved understanding of cellular response post anastomosis may result in reduced restenosis.
View Article and Find Full Text PDF3D visualization technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR) have gained popularity in the recent decade. Digital extended reality (XR) technologies have been adopted in various domains ranging from entertainment to education because of their accessibility and affordability. XR modalities create an immersive experience, enabling 3D visualization of the content without a conventional 2D display constraint.
View Article and Find Full Text PDFComorbidities such as anemia or hypertension and physiological factors related to exertion can influence a patient's hemodynamics and increase the severity of many cardiovascular diseases. Observing and quantifying associations between these factors and hemodynamics can be difficult due to the multitude of co-existing conditions and blood flow parameters in real patient data. Machine learning-driven, physics-based simulations provide a means to understand how potentially correlated conditions may affect a particular patient.
View Article and Find Full Text PDFThe growth of cerebral aneurysms is linked to local hemodynamic conditions, but the driving mechanisms of the growth are poorly understood. The goal of this study was to examine the association between intraaneurysmal hemodynamic features and areas of aneurysm growth, to present the key hemodynamic parameters essential for an accurate prediction of the growth, and to gain a deeper understanding of the underlying mechanisms. Patient-specific images of a growing cerebral aneurysm in 3 different growth stages acquired over a period of 40 months were segmented and reconstructed.
View Article and Find Full Text PDFIn two-color multiview (2CMV) advanced geospatial information (AGI) products, temporal changes in synthetic aperture radar (SAR) images acquired at different times are detected, colorized, and overlaid on an initial image such that new features are represented in cyan, and features that have disappeared are represented in red. Accurate detection of temporal changes in 2CMV AGI products can be challenging because of 'speckle noise' susceptibility and false positives that result from small orientation differences between objects imaged at different times. Accordingly, 2CMV products are often dominated by colored pixels when changes are detected via simple pixel-wise cross-correlation.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
August 2019
Conventional approaches of implementing computational fluid dynamics to study aneurysmal hemodynamics after treatment with a flow diverter stent are computationally expensive. Cumbersome meshing and lengthy simulation runtimes are common. To address these issues, we present a novel volume penalization method that considers flow diverters as heterogeneous porous media.
View Article and Find Full Text PDFInt J Biomed Imaging
February 2019
Three-dimensional (3D) biomedical image sets are often acquired with in-plane pixel spacings that are far less than the out-of-plane spacings between images. The resultant anisotropy, which can be detrimental in many applications, can be decreased using image interpolation. Optical flow and/or other registration-based interpolators have proven useful in such interpolation roles in the past.
View Article and Find Full Text PDFThe lattice Boltzmann method (LBM) is a popular alternative to solving the Navier-Stokes equations for modeling blood flow. When simulating flow using the LBM, several choices for inlet and outlet boundary conditions exist. While boundary conditions in the LBM have been evaluated in idealized geometries, there have been no extensive comparisons in image-derived vasculature, where the geometries are highly complex.
View Article and Find Full Text PDFBackground: 3D printing is an ideal manufacturing process for creating patient-matched models (anatomical models) for surgical and interventional planning. Cardiac anatomical models have been described in numerous case studies and journal publications. However, few studies attempt to describe wider impact of the novel planning augmentation tool.
View Article and Find Full Text PDFThe ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the ABI can potentially determine the parameters that produce an ABI indicative of ischemia or other abnormalities in blood flow. However, 0- and 1-D computational methods are limited in describing a 3-D patient-derived geometry.
View Article and Find Full Text PDFCardiovasc Eng Technol
March 2019
Purpose: To gain insight into the influence of coils on aneurysmal hemodynamics, computational fluid dynamics (CFD) can be used. Conventional methods of modeling coils consider the explicit geometry of the deployed devices within the aneurysm and discretize the fluid domain. However, the complex geometry of a coil mass leads to cumbersome domain discretization along with a significant number of mesh elements.
View Article and Find Full Text PDFBackground: Listed pediatric heart transplant patients have the highest solid-organ waitlist mortality rate. The donor-recipient body weight (DRBW) ratio is the clinical standard for allograft size matching but may unnecessarily limit a patient's donor pool. To overcome DRBW ratio limitations, two methods of performing virtual heart transplant fit assessments were developed that account for patient-specific nuances.
View Article and Find Full Text PDFThe etiology of up to 95% of cerebral aneurysms may be accounted for by hemodynamically-induced factors that create vascular injury. The purpose of this review is to describe key physical properties that stents have and how they affect cerebral aneurysms. We performed a two-step screening process.
View Article and Find Full Text PDFNoninvasive engineering models are now being used for diagnosing and planning the treatment of cardiovascular disease. Techniques in computational modeling and additive manufacturing have matured concurrently, and results from simulations can inform and enable the design and optimization of therapeutic devices and treatment strategies. The emerging synergy between large-scale simulations and 3D printing is having a two-fold benefit: first, 3D printing can be used to validate the complex simulations, and second, the flow models can be used to improve treatment planning for cardiovascular disease.
View Article and Find Full Text PDFFive immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm to 62 mm, even though mice were inoculated from the same tumor cell line under carefully controlled conditions.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
The development of atherosclerosis in the aorta is associated with low and oscillatory wall shear stress for normal patients. Moreover, localized differences in wall shear stress heterogeneity have been correlated with the presence of complex plaques in the descending aorta. While it is known that coarctation of the aorta can influence indices of wall shear stress, it is unclear how the degree of narrowing influences resulting patterns.
View Article and Find Full Text PDFAtypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to: (1) create deformable mesh models of the brainstem that allow for shape analyses; (2) calculate volumes of the midbrain, pons, medulla and the superior cerebellar peduncles; (3) interrogate correlations between regional brainstem volumes, cutaneous heat pain thresholds, and allodynia symptoms.
View Article and Find Full Text PDFCurr Opin Cardiol
January 2017
Purpose Of Review: Advances in medical imaging and three-dimensional (3D) reconstruction software have enabled a proliferation of 3D modeling and 3D printing for clinical applications. In particular, 3D printing has garnered an extraordinary media presence over the past few years. There is growing optimism that 3D printing can address patient specificity and complexity for improved interventional and surgical planning.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms.
View Article and Find Full Text PDFAortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta.
View Article and Find Full Text PDFBackground: Neurosurgery simulator development is growing as practitioners recognize the need for improved instructional and rehearsal platforms to improve procedural skills and patient care. In addition, changes in practice patterns have decreased the volume of specific cases, such as aneurysm clippings, which reduces the opportunity for operating room experience.
Objective: The authors developed a hands-on, dimensionally accurate model for aneurysm clipping using patient-derived anatomic data and three-dimensional (3D) printing.