Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B.
View Article and Find Full Text PDFThe increasing global demand for vegetable oils will only be met if there are significant improvements in the productivity of the major oil crops, such as oilseed rape. Metabolic engineering offers the prospect of further gains in yield beyond that already achieved by breeding and selection but requires guidance as to the changes that need to be made. Metabolic Control Analysis, through measurement and estimation of flux control coefficients, can indicate which enzymes have the most influence on a desired flux.
View Article and Find Full Text PDFJ Acad Ophthalmol (2017)
January 2023
To assess the various approaches to endophthalmitis prevention following traumatic open-globe injury (OGI) repair. A research electronic data capture (REDCap) questionnaire evaluating the usage of antibiotics and steroids in patients with OGI was distributed to program directors of all U.S.
View Article and Find Full Text PDFExploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields.
View Article and Find Full Text PDFThe regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B.
View Article and Find Full Text PDFObjective: The case draws attention to syphilis as a cause of chronic postoperative uveitis following cataract surgery and is the first to document transient worsening of ocular inflammation without systemic symptoms after initiation of treatment, suggesting a localized Jarisch-Herxheimer-like reaction.
Design: Case report.
Results: The average thickness of the retinal nerve fiber layer was used as an objective measure of intraocular inflammation.
Diatoms are photoautotrophic unicellular algae and are among the most abundant, adaptable, and diverse marine phytoplankton. They are extremely interesting not only for their ecological role but also as potential feedstocks for sustainable biofuels and high-value commodities such as omega fatty acids, because of their capacity to accumulate lipids. However, the cultivation of microalgae on an industrial scale requires higher cell densities and lipid accumulation than those found in nature to make the process economically viable.
View Article and Find Full Text PDFLysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient for LPAAT.
View Article and Find Full Text PDFAnalysis of the impact of photorespiration on plant metabolism is usually based on manual inspection of small network diagrams. Here we create a structural metabolic model that contains the reactions that participate in photorespiration in the plastid, peroxisome, mitochondrion and cytosol, and the metabolite exchanges between them. This model was subjected to elementary flux modes analysis, a technique that enumerates all the component, minimal pathways of a network.
View Article and Find Full Text PDFThe article 'Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function' by Niehaus et al. published in this issue illustrates a number of the problems that still arise when attempting to translate genotypes to phenotypes, such as for interpreting mutant phenotypes or building genome-scale metabolic models. In this case, the mutation concerned appears to map to an enzyme in one of the little-known but essential metabolite repair pathways that have been discovered in recent years.
View Article and Find Full Text PDFBiologically-derived hydrocarbons are considered to have great potential as next-generation biofuels owing to the similarity of their chemical properties to contemporary diesel and jet fuels. However, the low yield of these hydrocarbons in biotechnological production is a major obstacle for commercialization. Several genetic and process engineering approaches have been adopted to increase the yield of hydrocarbon, but a model driven approach has not been implemented so far.
View Article and Find Full Text PDFRice straw is a major crop residue which is burnt in many countries, creating significant air pollution. Thus, alternative routes for disposal of rice straw are needed. Biotechnological treatment of rice straw hydrolysate has potential to convert this agriculture waste into valuable biofuel(s) and platform chemicals.
View Article and Find Full Text PDFBackground: An increasing proportion of patients are presenting with colorectal cancer at an early age. A proportion of these occur with genetic syndromes; however the majority present as sporadic. The purpose of this study is to investigate the prognosis and treatment of young patients with sporadic metastatic colorectal cancer.
View Article and Find Full Text PDFMarine diatoms have potential as a biotechnological production platform, especially for lipid-derived products, including biofuels. Here we introduce some features of diatom metabolism, particularly with respect to photosynthesis, photorespiration and lipid synthesis and their differences relative to other photosynthetic eukaryotes. Since structural metabolic modelling of other photosynthetic organisms has been shown to be capable of representing their metabolic capabilities realistically, we briefly review the main approaches to this type of modelling.
View Article and Find Full Text PDFPreviously we have used a genome scale model of rice metabolism to describe how metabolism reconfigures at different light intensities in an expanding leaf of rice. Although this established that the metabolism of the leaf was adequately represented, in the model, the scenario was not that of the typical function of the leaf-to provide material for the rest of the plant. Here we extend our analysis to explore the transition to a source leaf as export of photosynthate increases at the expense of making leaf biomass precursors, again as a function of light intensity.
View Article and Find Full Text PDFProduce rich in phytochemicals may alter postprandial glucose and insulin responses by interacting with the pathways that regulate glucose uptake and insulin secretion in humans. The aims of the present study were to assess the phytochemical constituents of red beetroot juice and to measure the postprandial glucose and insulin responses elicited by either 225 ml beetroot juice (BEET), a control beverage matched for macronutrient content (MCON) or a glucose beverage in healthy adults. Beetroot juice was a particularly rich source of betalain degradation compounds.
View Article and Find Full Text PDFSalmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required.
View Article and Find Full Text PDFAlthough leaves have to accommodate markedly different metabolic flux patterns in the light and the dark, models of leaf metabolism based on flux-balance analysis (FBA) have so far been confined to consideration of the network under continuous light. An FBA framework is presented that solves the two phases of the diel cycle as a single optimization problem and, thus, provides a more representative model of leaf metabolism. The requirement to support continued export of sugar and amino acids from the leaf during the night and to meet overnight cellular maintenance costs forces the model to set aside stores of both carbon and nitrogen during the day.
View Article and Find Full Text PDFMathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.
View Article and Find Full Text PDFZymomonas mobilis, an ethanol-producing bacterium, possesses the Entner-Doudoroff (E-D) pathway, pyruvate decarboxylase and two alcohol dehydrogenase isoenzymes for the fermentative production of ethanol and carbon dioxide from glucose. Using available kinetic parameters, we have developed a kinetic model that incorporates the enzymic reactions of the E-D pathway, both alcohol dehydrogenases, transport reactions and reactions related to ATP metabolism. After optimizing the reaction parameters within likely physiological limits, the resulting kinetic model was capable of simulating glycolysis in vivo and in cell-free extracts with good agreement with the fluxes and steady-state intermediate concentrations reported in previous experimental studies.
View Article and Find Full Text PDFFlux balance models of metabolism generally utilize synthesis of biomass as the main determinant of intracellular fluxes. However, the biomass constraint alone is not sufficient to predict realistic fluxes in central heterotrophic metabolism of plant cells because of the major demand on the energy budget due to transport costs and cell maintenance. This major limitation can be addressed by incorporating transport steps into the metabolic model and by implementing a procedure that uses Pareto optimality analysis to explore the trade-off between ATP and NADPH production for maintenance.
View Article and Find Full Text PDFWe describe the construction and analysis of a genome-scale metabolic model representing a developing leaf cell of rice (Oryza sativa) primarily derived from the annotations in the RiceCyc database. We used flux balance analysis to determine that the model represents a network capable of producing biomass precursors (amino acids, nucleotides, lipid, starch, cellulose, and lignin) in experimentally reported proportions, using carbon dioxide as the sole carbon source. We then repeated the analysis over a range of photon flux values to examine responses in the solutions.
View Article and Find Full Text PDF