Publications by authors named "David Faul"

Purpose: We evaluated the impact of PET respiratory motion correction (MoCo) in a phantom and patients. Moreover, we proposed and examined a PET MoCo approach using motion vector fields (MVFs) from a deep-learning reconstructed short MRI scan.

Methods: The evaluation of PET MoCo was performed in a respiratory motion phantom study with varying lesion sizes and tumor to background ratios (TBRs) using a static scan as the ground truth.

View Article and Find Full Text PDF

PET/MRI scanners cannot be qualified in the manner adopted for hybrid PET/CT devices. The main hurdle with qualification in PET/MRI is that attenuation correction (AC) cannot be adequately measured in conventional PET phantoms because of the difficulty in converting the MR images of the physical structures (e.g.

View Article and Find Full Text PDF

A decade of PET/MRI clinical imaging has passed and many of the pitfalls are similar to those on earlier studies. However, techniques to overcome them have emerged and continue to develop. Although clinically significant lung nodules are demonstrable, smaller nodules may be detected using ultrashort/zero echo-time (TE) lung MRI.

View Article and Find Full Text PDF

Background: Attenuation correction is one of the most crucial correction factors for accurate PET data quantitation in hybrid PET/MR scanners, and computing accurate attenuation coefficient maps from MR brain acquisitions is challenging. Here, we develop a method for accurate bone and air segmentation using MR ultrashort echo time (UTE) images.

Methods: MR UTE images from simultaneous MR and PET imaging of five healthy volunteers was used to generate a whole head, bone and air template image for inclusion into an improved MR derived attenuation correction map, and applied to PET image data for quantitative analysis.

View Article and Find Full Text PDF

Background: Yttrium-90 (Y) radioembolization involves the intra-arterial delivery of radioactive microspheres to treat hepatic malignancies. Though this therapy involves careful pre-treatment planning and imaging, little is known about the precise location of the microspheres once they are administered. Recently, there has been growing interest post-radioembolization imaging using positron-emission tomography (PET) for quantitative dosimetry and identifying lesions that may benefit from additional salvage therapy.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to describe and evaluate methods for calculating a megavoltage computed tomography (MVCT)-derived MR hardware attenuation map (μ-map) and dual-energy CT (DECT) for 511 keV photons.

Methods: Phantom measurements were acquired on a whole-body hybrid PET/MRI system, using a four-channel receive-only MR radiofrequency (RF) breast coil. Two acquisitions were performed: with the phantoms positioned in the four-channel RF breast coil, and without the breast coil.

View Article and Find Full Text PDF

Purpose: Diffusion-weighted imaging (DWI) and F-fluorodeoxyglucose-positron emission tomography ( F-FDG-PET) independently correlate with malignancy in breast cancer, but the relationship between their structural and metabolic metrics is not completely understood. This study spatially correlates diffusion, perfusion, and glucose avidity in breast cancer with simultaneous PET/MR imaging and compares correlations with clinical prognostics.

Methods: In this Health Insurance Portability and Accountability Act-compliant prospective study, with written informed consent and approval of the institutional review board and using simultaneously acquired FDG-PET and DWI, tissue diffusion (D ), and perfusion fraction (f ) from intravoxel incoherent motion (IVIM) analysis were registered to FDG-PET within 14 locally advanced breast cancers.

View Article and Find Full Text PDF

Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study.

View Article and Find Full Text PDF

With the introduction of clinical PET/magnetic resonance (MR) systems, novel attenuation correction methods are needed, as there are no direct MR methods to measure the attenuation of the objects in the field of view (FOV). A unique challenge for PET/MR attenuation correction is that coils for MR data acquisition are located in the FOV of the PET camera and could induce significant quantitative errors. In this review, current methods and techniques to correct for the attenuation of a variety of coils are summarized and evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Simultaneous PET/MR imaging of the brain shows promise for evaluating cognitive impairment and epilepsy, but inaccuracies in PET SUV estimates due to MR signal differences pose challenges for clinical use.* -
  • A study compared various MR-based attenuation correction (AC) methods to reference CT AC in 16 patients, revealing that enhancing the linear AC for brain tissue and including a model-based bone compartment significantly improved the accuracy of SUV estimations.* -
  • The modified MR AC method resulted in a 95% reduction in SUV estimation bias across the whole brain, achieving an almost zero average bias and demonstrating potential for reliable brain imaging in neurodegeneration cases without needing extra MR imaging techniques.*
View Article and Find Full Text PDF

The purpose of this study was to develop and validate low dose (18)F-FDG-PET acquisition protocols for detection of inflamed carotid plaques specifically for simultaneous PET/MR imaging. The hypothesis was that increasing the duration of the PET acquisition to match that of the MR acquisition might allow for the use of lower levels of the radiotracer, while preserving quantification and image quality. Seven subjects were scanned twice at least one week apart on a simultaneous PET/MR scanner using either the standard clinical dose of (18)F-FDG (373 ± 63 MBq) for 8 minutes or a low dose (93 ± 17 MBq) for 75 minutes.

View Article and Find Full Text PDF

Unlabelled: In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging.

View Article and Find Full Text PDF

The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil.

View Article and Find Full Text PDF

Purpose: In quantitative PET imaging, it is critical to accurately measure and compensate for the attenuation of the photons absorbed in the tissue. While in PET/CT the linear attenuation coefficients can be easily determined from a low-dose CT-based transmission scan, in whole-body MR/PET the computation of the linear attenuation coefficients is based on the MR data. However, a constraint of the MR-based attenuation correction (AC) is the MR-inherent field-of-view (FoV) limitation due to static magnetic field (B0) inhomogeneities and gradient nonlinearities.

View Article and Find Full Text PDF

Objective: The purpose of this study was to compare the accuracy of the spatial registration of conventional PET/CT with that of hybrid PET/MRI of patients with FDG-avid metastatic lesions.

Subjects And Methods: Thirteen patients with known metastatic lesions underwent FDG PET/CT followed by PET/MRI with a hybrid whole-body system. The inclusion criterion for tumor analysis was spherical or oval FDG-avid tumor clearly identified with both CT and MRI.

View Article and Find Full Text PDF

Objective: The purpose of this study was to assess the correlation between standardized uptake value (SUV) and apparent diffusion coefficient (ADC) of neoplastic lesions in the use of a simultaneous PET/MRI hybrid system.

Subjects And Methods: Twenty-four patients with known primary malignancies underwent FDG PET/CT. They then underwent whole-body PET/MRI.

View Article and Find Full Text PDF

Metal implants such as hip prostheses and dental fillings produce streak and star artifacts in the reconstructed computed tomography (CT) images. Due to these artifacts, the CT image may not be diagnostically usable. A new reconstruction procedure is proposed that reduces the streak artifacts and that might improve the diagnostic value of the CT images.

View Article and Find Full Text PDF

Unlabelled: In patients with oral head and neck cancer, the presence of metallic dental implants produces streak artifacts in the CT images. These artifacts negate the utility of CT for the spatial localization of PET findings and may propagate through the CT-based attenuation correction into the PET images. In this study, we evaluated the efficacy of an algorithm that reduces metallic artifacts in CT images and the impact of this approach on the quantification of PET images.

View Article and Find Full Text PDF

Attenuation artefacts due to implanted cardiac defibrillator leads have previously been shown to adversely impact cardiac PET/CT imaging. In this study, the severity of the problem is characterized, and an image-based method is described which reduces the resulting artefact in PET. Automatic implantable cardioverter defibrillator (AICD) leads cause a moving-metal artefact in the CT sections from which the PET attenuation correction factors (ACFs) are derived.

View Article and Find Full Text PDF