Brain-computer interfaces (BCIs) enabling the control of a personal computer could provide myriad benefits to individuals with disabilities including paralysis. However, to realize this potential, these BCIs must gain regulatory approval and be made clinically available beyond research participation. Therefore, a transition from engineering-oriented to clinically oriented outcome measures will be required in the evaluation of BCIs.
View Article and Find Full Text PDFBimanual movements that require coordinated actions of the two hands may be coordinated by synchronous bilateral activation of somatosensory and motor cortical areas in both hemispheres, by enhanced activation of individual neurons specialized for bimanual actions, or by both mechanisms. To investigate cortical neural mechanisms that mediate unimanual and bimanual prehension, we compared actions of the left and right hands in a reach to grasp-and-pull instructed-delay task. Spike trains were recorded with multiple electrode arrays placed in the hand area of primary motor (M1) and somatosensory (S1) cortex of the right hemisphere in macaques, allowing us to measure and compare the relative timing, amplitude, and synchronization of cortical activity in these areas as animals grasped and manipulated objects that differed in shape and location.
View Article and Find Full Text PDFNeurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2011
The ability to accurately infer functional connectivity between ensemble neurons using experimentally acquired spike train data is currently an important research objective in computational neuroscience. Point process generalized linear models and maximum likelihood estimation have been proposed as effective methods for the identification of spiking dependency between neurons. However, unfavorable experimental conditions occasionally results in insufficient data collection due to factors such as low neuronal firing rates or brief recording periods, and in these cases, the standard maximum likelihood estimate becomes unreliable.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Identification of multiple simultaneously recorded neural spike train recordings is an important task in understanding neuronal dependency, functional connectivity, and temporal causality in neural systems. An assessment of the functional connectivity in a group of ensemble cells was performed using a regularized point process generalized linear model (GLM) that incorporates temporal smoothness or contiguity of the solution. An efficient convex optimization algorithm was then developed for the regularized solution.
View Article and Find Full Text PDF