Genome-scale metabolic models have become a fundamental tool for examining metabolic principles. However, metabolism is not solely characterized by the underlying biochemical reactions and catalyzing enzymes, but also affected by regulatory events. Since the pioneering work of Covert and co-workers as well as Shlomi and co-workers it is debated, how regulation and metabolism synergistically characterize a coherent cellular state.
View Article and Find Full Text PDFDespite being highly interdependent, the major biochemical networks of the living cell-the networks of interacting genes and of metabolic reactions, respectively-have been approached mostly as separate systems so far. Recently, a framework for interdependent networks has emerged in the context of statistical physics. In a first quantitative application of this framework to systems biology, here we study the interdependent network of gene regulation and metabolism for the model organism Escherichia coli in terms of a biologically motivated percolation model.
View Article and Find Full Text PDFFor several decades, a leading paradigm of how to quantitatively assess scientific research has been the analysis of the aggregated citation information in a set of scientific publications. Although the representation of this information as a citation network has already been coined in the 1960s, it needed the systematic indexing of scientific literature to allow for impact metrics that actually made use of this network as a whole, improving on the then prevailing metrics that were almost exclusively based on the number of direct citations. However, besides focusing on the assignment of credit, the paper citation network can also be studied in terms of the proliferation of scientific ideas.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2014
Following the work of Krumov et al. [Eur. Phys.
View Article and Find Full Text PDF