Publications by authors named "David F Allison"

Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2.

View Article and Find Full Text PDF

Trimethylated histone H3 lysine 27 (H3K27me3) regulates gene repression, cell-fate determination and differentiation. We report that a conserved bromo-adjacent homology (BAH) module of BAHCC1 (BAHCC1) 'recognizes' H3K27me3 specifically and enforces silencing of H3K27me3-demarcated genes in mammalian cells. Biochemical, structural and integrated chromatin immunoprecipitation-sequencing-based analyses demonstrate that direct readout of H3K27me3 by BAHCC1 is achieved through a hydrophobic trimethyl-L-lysine-binding 'cage' formed by BAHCC1, mediating colocalization of BAHCC1 and H3K27me3-marked genes.

View Article and Find Full Text PDF

Dysregulation of polycomb repressive complex 2 (PRC2) promotes oncogenesis partly through its enzymatic function for inducing trimethylation of histone H3 lysine 27 (H3K27me3). However, it remains to be determined how PRC2 activity is regulated in normal and diseased settings. We here report a PRC2-associated cofactor, PHD finger protein 19 (PHF19; also known as polycomb-like 3), as a crucial mediator of tumorigenicity in multiple myeloma (MM).

View Article and Find Full Text PDF

Exposure of genomic, single-stranded DNA (ssDNA) during transcription and replication creates opportunities for the formation of inappropriate secondary structures. Cells manage this exposure by using topoisomerases and helicases to reduce the inherent topological stress that arises from unwinding the double helix and by coating ssDNA with protective protein complexes. Interestingly, specific DNA-RNA hybrids, known as R-loops, form during transcription and exist in homeostasis throughout the genomes of prokaryotes and eukaryotes.

View Article and Find Full Text PDF

Background: Epithelial-to-mesenchymal transition (EMT) results in changes that promote de-differentiation, migration, and invasion in non-small cell lung cancer (NSCLC). While it is recognized that EMT promotes altered energy utilization, identification of metabolic pathways that link EMT with cancer progression is needed. Work presented here indicates that mesenchymal NSCLC upregulates glutamine-fructose-6-phosphate transaminase 2 (GFPT2).

View Article and Find Full Text PDF

Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia.

View Article and Find Full Text PDF

The protein stability and chromatin functions of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) are regulated in a cell-cycle-dependent manner. We report a structural characterization of the complex between UHRF1 and the deubiquitinase USP7. The first two UBL domains of USP7 bind to the polybasic region (PBR) of UHRF1, and this interaction is required for the USP7-mediated deubiquitination of UHRF1.

View Article and Find Full Text PDF

Soluble growth factors and cytokines within the tumor microenvironment aid in the induction of the epithelial-to-mesenchymal transition (EMT). Although EMT promotes the development of cancer-initiating cells (CIC), cellular mechanisms by which cancer cells maintain mesenchymal phenotypes remain poorly understood. Work presented here indicates that induction of EMT stimulates non-small cell lung cancer (NSCLC) to secrete soluble factors that function in an autocrine fashion.

View Article and Find Full Text PDF

Enhancer of zeste homolog 2 (EZH2) and related EZH1 control gene expression and promote tumorigenesis via methylating histone H3 at lysine 27 (H3K27). These methyltransferases are ideal therapeutic targets due to their frequent hyperactive mutations and overexpression found in cancer, including hematopoietic malignancies. Here, we characterized a set of small molecules that allow pharmacologic manipulation of EZH2 and EZH1, which include UNC1999, a selective inhibitor of both enzymes, and UNC2400, an inactive analog compound useful for assessment of off-target effect.

View Article and Find Full Text PDF

Background: The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the relationship between reprogramming and the coordination of cellular processes is largely unexplored.

View Article and Find Full Text PDF

The epithelial-to-mesenchymal transition (EMT) is a de-differentiation process that has been implicated in metastasis and the generation of cancer initiating cells (CICs) in solid tumors. To examine EMT in non-small cell lung cancer (NSCLC), we utilized a three dimensional (3D) cell culture system in which cells were co-stimulated with tumor necrosis factor alpha (TNF) and transforming growth factor beta (TGFβ). NSCLC spheroid cultures display elevated expression of EMT master-switch transcription factors, TWIST1, SNAI1/Snail1, SNAI2/Slug and ZEB2/Sip1, and are highly invasive.

View Article and Find Full Text PDF

The molecular mechanisms linking glucose metabolism with active transcription remain undercharacterized in mammalian cells. Using nuclear factor-κB (NF-κB) as a glucose-responsive transcription factor, we show that cells use the hexosamine biosynthesis pathway and O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) to potentiate gene expression in response to tumor necrosis factor (TNF) or etoposide. Chromatin immunoprecipitation assays demonstrate that, upon induction, OGT localizes to NF-κB-regulated promoters to enhance RelA acetylation.

View Article and Find Full Text PDF

Although IKK-related kinases are known to augment immune pathways, their importance to DNA-damage response has not been previously elucidated; in this issue of Molecular Cell, Renner et al. (2010) show that genotoxic stress requires SUMOylated IKKvarepsilon to regulate NF-kappaB transcription and cell survival.

View Article and Find Full Text PDF

The mechanisms by which catenins regulate cadherin function are not fully understood, and the precise function of p120 catenin (p120ctn) has remained particularly elusive. In microvascular endothelial cells, p120ctn colocalized extensively with cell surface VE-cadherin, but failed to colocalize with VE-cadherin that had entered intracellular degradative compartments. To test the possibility that p120ctn binding to VE-cadherin regulates VE-cadherin internalization, a series of approaches were undertaken to manipulate p120ctn availability to endogenous VE-cadherin.

View Article and Find Full Text PDF

VE-cadherin is an endothelial-specific cadherin that plays important roles in vascular morphogenesis and growth control. To investigate the mechanisms by which endothelial cells regulate cadherin cell surface levels, a VE-cadherin mutant containing the non-adhesive interleukin-2 (IL-2) receptor extracellular domain and the VE-cadherin cytoplasmic tail (IL-2R-VE-cadcyto) was expressed in microvascular endothelial cells. Expression of the IL-2R-VE-cadcyto mutant resulted in the internalization of endogenous VE-cadherin and in a dramatic decrease in endogenous VE-cadherin levels.

View Article and Find Full Text PDF