Publications by authors named "David F Aldridge"

Formulation and implementation of time-domain boundary conditions (TDBCs) at the surface of a reactive porous material are made challenging by the slow decay, complexity, or noncausal nature of many commonly used models of porous materials. In this paper, approaches are described that improve computational efficiency and enforce causality. One approach involves approximating the known TDBC for the modified Zwikker-Kosten impedance model as a summation of decaying exponential functions.

View Article and Find Full Text PDF

Finite-difference, time-domain (FDTD) calculations are typically performed with partial differential equations that are first order in time. Equation sets appropriate for FDTD calculations in a moving inhomogeneous medium (with an emphasis on the atmosphere) are derived and discussed in this paper. Two candidate equation sets, both derived from linearized equations of fluid dynamics, are proposed.

View Article and Find Full Text PDF