Publications by authors named "David Erbe"

Hereditary transthyretin-mediated (hATTR) amyloidosis is an underdiagnosed, progressively debilitating disease caused by mutations in the transthyretin (TTR) gene. V122I, a common pathogenic TTR mutation, is found in 3-4% of individuals of African ancestry in the United States and has been associated with cardiomyopathy and heart failure. To better understand the phenotypic consequences of carrying V122I, we conducted a phenome-wide association study scanning 427 ICD diagnosis codes in UK Biobank participants of African ancestry (n = 6062).

View Article and Find Full Text PDF

Background And Objectives: In the rare disease primary hyperoxaluria type 1, overproduction of oxalate by the liver causes kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. Lumasiran, an RNA interference therapeutic, suppresses glycolate oxidase, reducing hepatic oxalate production. The objective of this first-in-human, randomized, placebo-controlled trial was to evaluate the safety, pharmacokinetic, and pharmacodynamic profiles of lumasiran in healthy participants and patients with primary hyperoxaluria type 1.

View Article and Find Full Text PDF

Objective: To identify changes in the proteome associated with onset and progression of hereditary transthyretin-mediated (hATTR) amyloidosis, also known as ATTRv amyloidosis, we performed an observational, case-controlled study that compared proteomes of patients with ATTRv amyloidosis and healthy controls.

Methods: Plasma levels of >1,000 proteins were measured in patients with ATTRv amyloidosis with polyneuropathy who received either placebo or patisiran in a Phase 3 study of patisiran (APOLLO), and in healthy controls. The effect of patisiran on the time profile of each protein was determined by linear mixed model at 0, 9, and 18 months.

View Article and Find Full Text PDF

Destabilised transthyretin (TTR) can result in the progressive, fatal disease transthyretin-mediated (ATTR) amyloidosis. A stabilising mutation, T119M, is the basis for a therapeutic strategy to reduce destabilised TTR. Recently, T119M was associated with extended lifespan and lower risk of cerebrovascular disease in a Danish cohort.

View Article and Find Full Text PDF

By sequencing autozygous human populations, we identified a healthy adult woman with lifelong complete knockout of (expected ~1 in 30 million outbred people). (glycolate oxidase) silencing is the mechanism of lumasiran, an investigational RNA interference therapeutic for primary hyperoxaluria type 1. Her plasma glycolate levels were 12 times, and urinary glycolate 6 times, the upper limit of normal observed in healthy reference individuals (n = 67).

View Article and Find Full Text PDF
Article Synopsis
  • Primary Hyperoxaluria (PH) is a rare genetic disorder that leads to high oxalate levels in the body, causing kidney stones and potential kidney failure.
  • Recent research indicates that using RNA interference (RNAi) can effectively reduce oxalate production by targeting the LDHA enzyme in the liver, leading to significant reductions in urinary oxalate levels in mouse models of PH.
  • The findings suggest the potential for RNAi treatments in managing PH, but further studies are needed to understand the full metabolic impact and alternative pathways for oxalate production in different tissues.
View Article and Find Full Text PDF

Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk.

View Article and Find Full Text PDF

The long circulating half-life of serum albumin, the most abundant protein in mammalian plasma, derives from pH-dependent endosomal salvage from degradation, mediated by the neonatal Fc receptor (FcRn). Using yeast display, we identified human serum albumin (HSA) variants with increased affinity for human FcRn at endosomal pH, enabling us to solve the crystal structure of a variant HSA/FcRn complex. We find an extensive, primarily hydrophobic interface stabilized by hydrogen-bonding networks involving protonated histidines internal to each protein.

View Article and Find Full Text PDF
Article Synopsis
  • Effective therapies for excessive bleeding are necessary, and a new variant of coagulation factor Xa (FXa(I16L)) shows promise in improving hemostasis.
  • FXa(I16L) is more stable than the wild-type version, with a longer half-life, and does not lead to overactivation of coagulation in hemophilic mouse models.
  • This variant enhances blood clot formation effectively and may serve as a rapid treatment option for various bleeding disorders, potentially outperforming existing treatments like FVIIa.
View Article and Find Full Text PDF

Tissue specific amplification of glucocorticoid action through NADPH-dependent reduction of inactive glucocorticoid precursors by 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) contributes to the development of visceral obesity, insulin resistance and Type 2 Diabetes. Hexose-6-phosphate dehydrogenase (H6PDH) is believed to supply NADPH for the reductase activity of 11beta-HSD1 in the lumen of the endoplasmic reticulum (ER), where the two enzymes are co-localized. We report here expression and purification of full-length and truncated N-terminal domain (NTD) of H6PDH in a mammalian expression system.

View Article and Find Full Text PDF

In a search for more effective anti-diabetic treatment, we used a process coupling low-affinity biochemical screening with high-throughput co-crystallography in the design of a series of compounds that selectively modulate the activities of all three peroxisome proliferator-activated receptors (PPARs), PPARalpha, PPARgamma, and PPARdelta. Transcriptional transactivation assays were used to select compounds from this chemical series with a bias toward partial agonism toward PPARgamma, to circumvent the clinically observed side effects of full PPARgamma agonists. Co-crystallographic characterization of the lead molecule, indeglitazar, in complex with each of the 3 PPARs revealed the structural basis for its PPAR pan-activity and its partial agonistic response toward PPARgamma.

View Article and Find Full Text PDF

The prevalence of obesity in the USA and worldwide has reached epidemic proportions during the last two decades. Drugs currently available for the treatment of obesity provide no more than 5% placebo-adjusted weight loss and are associated with undesirable side effects. Peroxisome proliferator-activated receptor (PPAR) modulators offer potential benefits for the treatment of obesity and its associated complications but their development has been complicated by biological, technical, and regulatory challenges.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin receptor pathways and thus an attractive therapeutic target for diabetes and obesity. Starting with a high micromolar lead compound, structure-based optimization of novel PTP1B inhibitors by extension of the molecule from the enzyme active site into the second phosphotyrosine binding site is described. Medicinal chemistry, guided by X-ray complex structure and molecular modeling, has yielded low nanomolar PTP1B inhibitors in an efficient manner.

View Article and Find Full Text PDF

Considerable effort exists within drug discovery to develop novel compounds to improve the underlying metabolic defects in type 2 diabetes. One approach is focused on inhibition of the tyrosine phosphatase, PTP1B, an important negative regulator of both insulin and leptin signaling. Historically, tyrosine phosphatase assays have used either small organic phosphates or, alternatively, phosphorylated peptides from the target proteins themselves.

View Article and Find Full Text PDF

The following account describes our systematic effort to replace one of the carboxylate groups of our diacid thiophene PTP1B inhibitors. Active hits were validated using enzymatic assays before pursuing efforts to improve the potency. Only when the C2 carboxylic acid was replaced with another ionizable functional group was reversible and competitive inhibition retained.

View Article and Find Full Text PDF

A series of monocyclic thiophenes was designed and synthesized as PTP1B inhibitors. Guided by X-ray co-crystal structural information and computational modeling, rational design led to key interactions with Asp48 and improved inhibitory potency against PTP1B.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between elevated blood pressure and insulin resistance, focusing on the effects of angiotensin II type 1-receptor (ATR(1)) antagonists on insulin sensitivity through the PPARgamma nuclear receptor.
  • In laboratory tests, some ATR(1) antagonists showed potential as PPARgamma ligands, but only telmisartan and candesartan demonstrated significant activity.
  • However, in live mice, these antagonists did not improve insulin sensitivity as effectively as rosiglitazone, suggesting that the impact of sartans on insulin sensitivity might involve different mechanisms and highlighting the need for new treatments for hypertension and insulin resistance.
View Article and Find Full Text PDF

Ertiprotafib belongs to a novel class of insulin sensitizers developed for treatment of type 2 diabetes. In insulin-resistant rodent models, ertiprotafib and a close analog lowered both fasting blood glucose and insulin levels and improved glycemic excursion during an oral glucose tolerance test. In addition, treatment of rodents improved lipid profiles, with significantly lowered triglyceride and free fatty acid levels.

View Article and Find Full Text PDF

Antagonists of the B7 family of co-stimulatory molecules have the potential for altering immune responses therapeutically. To better define the requirements for such inhibitors, we have mapped the binding of an entire panel of blocking antibodies specific for human B7.1.

View Article and Find Full Text PDF

The interaction of co-stimulatory molecules on T cells with B7 molecules on antigen presenting cells plays an important role in the activation of naive T cells. Consequently, agents that disrupt these interactions should have applications in treatment of transplant rejection as well as autoimmune diseases. To this end, specific small molecule inhibitors of human B7.

View Article and Find Full Text PDF