Publications by authors named "David Eliezer"

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a gene called PGK1, which is important for brain cells to make energy.
  • They found that increasing PGK1 can help brain cells work better and protect them from problems caused by Parkinson's disease.
  • This research suggests that fixing energy issues in brain cells might be a good way to help treat Parkinson's disease in the future.
View Article and Find Full Text PDF

CHCHD10 is mutated in rare cases of FTD and ALS and aggregates in mouse models of disease. Here we show that the disordered N-terminal domain of CHCHD10 forms amyloid fibrils and report their cryoEM structure. Disease-associated mutations cannot be accommodated by the WT fibril structure, while sequence differences between CHCHD10 and CHCHD2 are tolerated, explaining the co-aggregation of the two proteins and linking CHCHD10 and CHCHD2 amyloid fibrils to neurodegeneration.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of senile dementia, presenting a significant challenge for the development of effective treatments. AD is characterized by extracellular amyloid plaques and intraneuronal neurofibrillary tangles. Therefore, targeting both hallmarks through inhibition of amyloid beta (Aβ) and tau aggregation presents a promising approach for drug development.

View Article and Find Full Text PDF
Article Synopsis
  • PGK1 is an enzyme that helps produce energy in cells and is being studied as a way to help treat Parkinson's Disease.
  • Research shows that boosting the activity of PGK1 in brain cells can protect against problems caused by the disease.
  • Scientists found that issues with energy production in nerve cells may be a key reason why some people are more likely to get Parkinson's, making PGK1 an important target for new treatments.
View Article and Find Full Text PDF

Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane.

View Article and Find Full Text PDF

The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo, these proteins form large immunostaining foci that are integrated with higher-order chromosome structures. In vitro, they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates.

View Article and Find Full Text PDF

Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress.

View Article and Find Full Text PDF
Article Synopsis
  • Limited chemical shift dispersion in fluorine NMR makes it hard to study different states of large membrane proteins.
  • A new monofluoroethyl fluorine probe improves chemical shift dispersion, allowing better detection of protein states.
  • This method helps correlate protein state changes with structural data from cryo-electron microscopy, aiding in the visualization and analysis of protein conformations.
View Article and Find Full Text PDF

The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. , these proteins form large immunostaining foci that are integrated with higher order chromosome structures. , they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates.

View Article and Find Full Text PDF

Alpha-synuclein is a presynaptic protein linked to Parkinson's disease with a poorly characterized physiological role in regulating the synaptic vesicle cycle. Using RBL-2H3 cells as a model system, we earlier reported that wild-type alpha-synuclein can act as both an inhibitor and a potentiator of stimulated exocytosis in a concentration-dependent manner. The inhibitory function is constitutive and depends on membrane binding by the helix-2 region of the lipid-binding domain, while potentiation becomes apparent only at high concentrations.

View Article and Find Full Text PDF

(1) Background: Prion-like transcellular spreading of tau pathology in Alzheimer's disease (AD) is mediated by tau binding to the cell-surface glycan heparan sulfate (HS). However, the structural determinants for tau-HS interaction are not well understood. (2) Methods and Results: Binding-site mapping using NMR showed two major binding regions in full-length tau responsible for heparin interaction.

View Article and Find Full Text PDF

Alpha-synuclein (a-Syn) is a presynaptic protein, the misfolding of which is associated with Parkinson's disease. Rab GTPases are small guanine nucleotide binding proteins that play key roles in vesicle trafficking and have been associated with a-Syn function and dysfunction. a-Syn is enriched on synaptic vesicles, where it has been reported to interact with GTP-bound Rab3a, a master regulator of synaptic vesicle trafficking.

View Article and Find Full Text PDF

Complexins play a critical role in regulating SNARE-mediated exocytosis of synaptic vesicles. Evolutionary divergences in complexin function have complicated our understanding of the role these proteins play in inhibiting the spontaneous fusion of vesicles. Previous structural and functional characterizations of worm and mouse complexins have indicated the membrane curvature-sensing C-terminal domain of these proteins is responsible for differences in inhibitory function.

View Article and Find Full Text PDF

α-synuclein, β-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies.

View Article and Find Full Text PDF

A pectic polysaccharide (WAP) was isolated from squash and identified as a homogalacturonan with a molecular mass of 83.2 kDa by GPC, monosaccharide composition analysis, FT-IR and NMR spectra. Sulfation modification of WAP was carried out and a sulfated derivative (SWAP) was obtained with a substitution degree of 1.

View Article and Find Full Text PDF

Abnormalities in brain glucose metabolism and accumulation of abnormal protein deposits called plaques and tangles are neuropathological hallmarks of Alzheimer's disease (AD), but their relationship to disease pathogenesis and to each other remains unclear. Here we show that succinylation, a metabolism-associated post-translational protein modification (PTM), provides a potential link between abnormal metabolism and AD pathology. We quantified the lysine succinylomes and proteomes from brains of individuals with AD, and healthy controls.

View Article and Find Full Text PDF

The misfolding and aggregation of the protein α-synuclein (aSyn) into potentially neurotoxic oligomers is believed to play a pivotal role in the neuropathogenesis of Parkinson's disease (PD). Herein, we explore how apomorphine (Apo), a nonselective dopamine D1 and D2 receptor agonist utilized in the therapy for PD, affects the aggregation and toxicity of aSyn in vitro. Our data indicated that Apo inhibits aSyn fibrillation leading to the formation of large oligomeric species (Apo-aSyn-O), which exhibit remarkable toxicity in mesencephalic dopaminergic neurons in primary cultures.

View Article and Find Full Text PDF

Post-translationally modified tau is the primary component of tau neurofibrillary tangles, a pathological hallmark of Alzheimer's disease and other tauopathies. Post-translational modifications (PTMs) within the tau microtubule (MT)-binding domain (MBD), which encompasses two hexapeptide motifs that act as critical nucleating regions for tau aggregation, can potentially modulate tau aggregation as well as interactions with MTs and membranes. Here, we characterize the effects of a recently discovered tau PTM, lysine succinylation, on tau-tubulin interactions and compare these to the effects of two previously reported MBD modifications, lysine acetylation and tyrosine phosphorylation.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative disease which severely impacts the health of the elderly. Current treatments are only able to alleviate symptoms, but not prevent or cure the disease. The neurofibrillary tangles formed by tau protein aggregation are one of the defining characteristics of Alzheimer's disease, so tau protein has become a key target for the drug design.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) can affect the normal function and pathology of α-synuclein (αS), an amyloid-fibril-forming protein linked to Parkinson's disease. Phosphorylation of αS Tyr39 has recently been found to display a dose-dependent effect on fibril formation kinetics and to alter the morphology of the fibrils. Existing methods to access site-specifically phosphorylated αS for biochemical studies include total or semi-synthesis by native chemical ligation (NCL) as well as chemoenzymatic methods to phosphorylate peptides, followed by NCL.

View Article and Find Full Text PDF

Cerebrovascular abnormalities have emerged as a preclinical manifestation of Alzheimer's disease and frontotemporal dementia, diseases characterized by the accumulation of hyperphosphorylated forms of the microtubule-associated protein tau. However, it is unclear whether tau contributes to these neurovascular alterations independent of neurodegeneration. We report that mice expressing mutated tau exhibit a selective suppression of neural activity-induced cerebral blood flow increases that precedes tau pathology and cognitive impairment.

View Article and Find Full Text PDF