Publications by authors named "David E. Reichert"

Introduction: In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.

Methods: A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.

View Article and Find Full Text PDF

In this work, we develop recombinant human cationic ferritin (rHCF) as a contrast agent to detect glomeruli in the kidney using positron emission tomography (PET). We first expressed recombinant human ferritin (rHF) in and then functionalized and radiolabeled it with Copper-64 (Cu) to form Cu-rHCF. Intravenously injected Cu-rHCF bound to kidney glomeruli and was detected by PET.

View Article and Find Full Text PDF

Cationic ferritin (CF) has been developed as a multimodal, targeted imaging tracer to directly detect and map nephrons in the kidney in vivo. Direct detection of functional nephrons provides a unique, sensitive biomarker to predict or monitor kidney disease progression. CF has been developed to map functional nephron number from magnetic resonance imaging (MRI) or positron emission tomography (PET).

View Article and Find Full Text PDF

Aliphatic diazirine analogues of cholesterol have been used previously to elaborate the cholesterol proteome and identify cholesterol binding sites on proteins. Cholesterol analogues containing the trifluoromethylphenyl diazirine (TPD) group have not been reported. Both classes of diazirines have been prepared for neurosteroid photolabeling studies and their combined use provided information that was not obtainable with either diazirine class alone.

View Article and Find Full Text PDF

Prior work employing functional analysis, photolabeling, and X-ray crystallography have identified three distinct binding sites for potentiating steroids in the heteromeric GABA receptor. The sites are located in the membrane-spanning domains of the receptor at the - subunit interface (site I) and within the (site II) and subunits (site III). Here, we have investigated the effects of mutations to these sites on potentiation of the rat 122L GABA receptor by the endogenous neurosteroid allopregnanolone (35P).

View Article and Find Full Text PDF

Nephron number varies widely in humans. A low nephron endowment at birth or a loss of functioning nephrons is strongly linked to increased susceptibility to chronic kidney disease. In this work, we developed a contrast agent, radiolabeled cationic ferritin (RadioCF), to map functioning glomeruli in vivo in the kidney using positron emission tomography (PET).

View Article and Find Full Text PDF

This study examines how site-specific binding to three identified neurosteroid-binding sites in the αβ GABA receptor (GABAR) contributes to neurosteroid allosteric modulation. We found that the potentiating neurosteroid, allopregnanolone, but not its inhibitory 3β-epimer epi-allopregnanolone, binds to the canonical β(+)-α(-) intersubunit site that mediates receptor activation by neurosteroids. In contrast, both allopregnanolone and epi-allopregnanolone bind to intrasubunit sites in the β subunit, promoting receptor desensitization and the α subunit promoting effects that vary between neurosteroids.

View Article and Find Full Text PDF

The 1 GABA receptor is prominently expressed in the retina and is present at lower levels in several brain regions and other tissues. Although the 1 receptor is insensitive to many anesthetic drugs that modulate the heteromeric GABA receptor, it maintains a rich and multifaceted steroid pharmacology. The receptor is negatively modulated by 5-reduced steroids, sulfated or carboxylated steroids, and -estradiol, whereas many 5-reduced steroids potentiate the receptor.

View Article and Find Full Text PDF

Neurosteroids positively modulate GABA-A receptor (GABAR) channel activity by binding to a transmembrane domain intersubunit site. Understanding the interactions in this site that determine neurosteroid binding and its effect is essential for the design of neurosteroid-based therapeutics. Using photo-affinity labeling and an ELIC-α1GABAR chimera, we investigated the impact of mutations (Q242L, Q242W and W246L) within the intersubunit site on neurosteroid binding.

View Article and Find Full Text PDF

Nanoparticles have been widely used for preclinical cancer imaging. However, their successful clinical translation is largely hampered by potential toxicity, unsatisfactory detection of malignancy at early stages, inaccurate diagnosis of tumor biomarkers, and histology for imaging-guided treatment. Herein, a targeted copper nanocluster (CuNC) is reported with high potential to address these challenges for future translation.

View Article and Find Full Text PDF

Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While gamma amino-butyric acid Type A (GABAA) receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites.

View Article and Find Full Text PDF

There is a growing demand for diagnostic procedures including in vivo tumor imaging. Radiometal-based imaging agents are advantageous for tumor imaging because radiometals (i) have a wide range of half-lives and (ii) are easily incorporated into imaging probes via a mild, rapid chelation event with a bifunctional chelator (BFC). Microfluidic platforms hold promise for synthesis of radiotracers because they can easily handle minute volumes, reduce consumption of expensive reagents, and minimize personnel exposure to radioactive compounds.

View Article and Find Full Text PDF

Ketamine is a psychotomimetic and antidepressant drug. Although antagonism of cell-surface NMDA receptors (NMDARs) may trigger ketamine's psychoactive effects, ketamine or its major metabolite norketamine could act intracellularly to produce some behavioral effects. To explore the viability of this latter hypothesis, we examined intracellular accumulation of novel visualizable analogues of ketamine/norketamine.

View Article and Find Full Text PDF

Unlabelled: (89)Zr-labeled antibodies are being investigated in several clinical trials; however, the time requirement for synthesis of clinical doses can hinder patient throughput because of scheduling difficulties. Additionally, low specific activity due to poor labeling efficiency can require larger amounts of the radiopharmaceutical to be administered, possibly leading to adverse side effects. Here, we describe the design and evaluation of a microfluidic reactor capable of synthesizing a single clinical dose of (89)Zr-labeled antibody.

View Article and Find Full Text PDF

Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction.

View Article and Find Full Text PDF

We have developed a microfluidic "click chip" incorporating an immobilized Cu(I) catalyst for click reactions. The microfluidic device was fabricated from polydimethylsiloxane (PDMS) bonded to glass and featured ~14,400 posts on the surface to improve catalyst immobilization. This design increased the immobilization efficiency and reduces the reagents' diffusion time to active catalyst site.

View Article and Find Full Text PDF

A series of 2-methoxyphenyl piperazine analogues containing a triazole ring were synthesized and their in vitro binding affinities at human dopamine D2 and D3 receptors were evaluated. Compounds 5b, 5c, 5d, and 4g, demonstrate high affinity for dopamine D3 receptors and moderate selectivity for the dopamine D3 versus D2 receptor subtypes. To further examine their potential as therapeutic agents, their intrinsic efficacy at both D2 and D3 receptors was determined using a forskolin-dependent adenylyl cyclase inhibition assay.

View Article and Find Full Text PDF

Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE.

View Article and Find Full Text PDF

This study was aimed at developing a triazine-based modular platform for targeted PET imaging. We synthesized mono- or bis-cyclo(RGDfK) linked triazine-based conjugates specifically targeting integrin αvβ3 receptors. The core molecules could be easily linked to targeting peptide and radiolabeled bifunctional chelator.

View Article and Find Full Text PDF

A series of N-(2-methoxyphenyl)homopiperazine analogs was prepared and their affinities for dopamine D2, D3, and D4 receptors were measured using competitive radioligand binding assays. Several ligands exhibited high binding affinity and selectivity for the D3 dopamine receptor compared to the D2 receptor subtype. Compounds 11a, 11b, 11c, 11f, 11j and 11k had K(i) values ranging from 0.

View Article and Find Full Text PDF

We previously reported on the synthesis of substituted phenyl-4-hydroxy-1-piperidyl indole analogues with nanomolar affinity at D2 dopamine receptors, ranging from 10- to 100-fold selective for D2 compared to the D3 dopamine receptor subtype. More recently, we evaluated a panel of aripiprazole analogues, identifying several analogues that also exhibit D2 vs D3 dopamine receptor binding selectivity. These studies further characterize the intrinsic efficacy of the compound with the greatest binding selectivity from each chemical class, 1-((5-methoxy-1H-indol-3-yl)methyl)-4-(4-(methylthio)phenyl)piperidin-4-ol (SV 293) and 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one (SV-III-130s), using an adenylyl cyclase inhibition assay, a G-protein-coupled inward-rectifying potassium (GIRK) channel activation assay, and a cell based phospho-MAPK (pERK1/2) assay.

View Article and Find Full Text PDF

Introduction: A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals.

Methods: The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time.

View Article and Find Full Text PDF

Accumulated evidence suggests that neurosteroids modulate GABA(A) receptors through binding interactions with transmembrane domains. To identify these neurosteroid binding sites directly, a neurosteroid-analog photolabeling reagent, (3α,5β)-6-azi-pregnanolone (6-AziP), was used to photolabel membranes from Sf9 cells expressing high-density, recombinant, His(8)-β3 homomeric GABA(A) receptors. 6-AziP inhibited (35)S-labeled t-butylbicyclophosphorothionate binding to the His(8)-β3 homomeric GABA(A) receptors in a concentration-dependent manner (IC(50) = 9 ± 1 μM), with a pattern consistent with a single class of neurosteroid binding sites.

View Article and Find Full Text PDF

Previous studies have shown that the neurosteroid analogue, 6-Azi-pregnanolone (6-AziP), photolabels voltage-dependent anion channels and proteins of approximately 55 kDa in rat brain membranes. The present study used two-dimensional electrophoresis and nanoelectrospray ionization ion-trap mass spectrometry (nano-ESI-MS) to identify the 55 kDa proteins (isoelectric point 4.8) as isoforms of β-tubulin.

View Article and Find Full Text PDF