Publications by authors named "David E Thurston"

Article Synopsis
  • Anti-EGFR antibodies have limited effectiveness in breast cancer due to compensatory pathways and resistance in triple-negative breast cancer (TNBC) from CDK2/cyclin E expression; however, a cetuximab-based antibody drug conjugate (ADC) incorporating a CDK inhibitor may improve targeted treatment.
  • In experimental designs, researchers evaluated the expressions of cell cycle regulators alongside EGFR and developed an ADC, combining cetuximab with CDK inhibitor SNS-032, to specifically deliver treatment to EGFR-expressing cancer cells.
  • Results showed that the ADC effectively inhibited tumor growth, induced cytotoxic effects on high EGFR-expressing cells, and demonstrated potential for improved targeting in aggressive breast cancer types, highlighting the importance
View Article and Find Full Text PDF
Article Synopsis
  • - Antibody drug conjugates (ADCs) are cancer therapies that combine an antibody with a toxic drug to specifically target and kill cancer cells while minimizing damage to normal tissues.
  • - The development of ADCs has led to the approval of twelve in the US and eight in the EU, providing treatment options for various blood and solid tumors.
  • - Choosing the right antigen for ADCs is essential for achieving effective targeting and reducing side effects, and this involves understanding the antigen's expression patterns and biological characteristics.
View Article and Find Full Text PDF

Antibody-Drug Conjugates (ADCs) are growing in importance for the treatment of both solid and haematological malignancies. There is a demand for new payloads with novel mechanisms of action that may offer enhanced therapeutic efficacy, especially in patients who develop resistance. We report here a class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads that simultaneously alkylate guanine (G) and adenine (A) bases in the DNA minor groove with a defined sequence selectivity.

View Article and Find Full Text PDF

Antibody-Drug Conjugates (ADCs) developed as a targeted treatment approach to deliver toxins directly to cancer cells are one of the fastest growing classes of oncology therapeutics, with eight ADCs and two immunotoxins approved for clinical use. However, selection of an optimum target and payload combination, to achieve maximal therapeutic efficacy without excessive toxicity, presents a significant challenge. We have developed a platform to facilitate rapid and cost-effective screening of antibody and toxin combinations for activity and safety, based on streptavidin-biotin conjugation.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are incurable hematological malignancies that are pathologically linked with aberrant NF-κB activation. In this study, we identified a group of novel C8-linked benzofused Pyrrolo[2,1-c][1,4]benzodiazepines (PBD) monomeric hybrids capable of sequence-selective inhibition of NF-κB with low nanomolar LD50 values in CLL (n=46) and MM cell lines (n=5). The lead compound, DC-1-192, significantly inhibited NF-κB DNA binding after just 4h exposure and demonstrating inhibitory effects on both canonical and non-canonical NF-κB subunits.

View Article and Find Full Text PDF

Antibody-Drug Conjugates (ADCs) consist of antibodies attached to cytotoxic small molecules or biological agents (i.e., payloads) through chemical linkers which may be cleavable or non-cleavable.

View Article and Find Full Text PDF

Despite emerging targeted and immunotherapy treatments, no monoclonal antibodies or antibody-drug conjugates (ADCs) directly targeting tumor cells are currently approved for melanoma therapy. The tumor-associated antigen chondroitin sulphate proteoglycan 4 (CSPG4), a neural crest glycoprotein over-expressed on 70% of melanomas, contributes to proliferative signaling pathways, but despite highly tumor-selective expression it has not yet been targeted using ADCs. We developed a novel ADC comprising an anti-CSPG4 antibody linked to a DNA minor groove-binding agent belonging to the novel pyrridinobenzodiazepine (PDD) class.

View Article and Find Full Text PDF

The systematic shortening of the noncovalent element of a C8-linked pyrrolobenzodiazepine (PBD) conjugate (13) led to the synthesis of a 19-member library of C8-PBD monomers. The critical elements of 13, which were required to render the molecule cytotoxic, were elucidated by an annexin V assay. The effects of shortening the noncovalent element of the molecule on transcription factor inhibitory capacity were also explored through an enzyme-linked immunosorbent assay-based measurement of nuclear NF-κB upon exposure of JJN-3 cells to the synthesized molecules.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) consist of monoclonal antibodies (mAbs) or antibody fragments conjugated to biologically active molecules (usually highly cytotoxic small molecules) through chemical linkers. Although no ADCs containing covalent-binding DNA-interactive payloads have yet been approved (although two containing the DNA-cleaving payload calicheamicin have), of those in clinical trials systemic toxicities are beginning to emerge. This article discusses the observed toxicities in relation to the structures and mechanisms of action of payload type.

View Article and Find Full Text PDF

Anthramycin (ANT) is a member of the pyrolobenzodiazepine family and is a potent cytotoxic agent. Previously, we reported the topical delivery of ANT from a range of solvents that may also act as skin penetration enhancers (SPEs). The skin penetration and uptake was monitored for simple solutions of ANT in propylene glycol (PG), dipropylene glycol (DiPG), Transcutol P (TC), isopropyl myristate (IPM), propylene glycol monocaprylate (PGMC) and propylene glycol monolaurate (PGML).

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are emerging as effective tools in cancer therapy, combining the antibody's exquisite specificity for the target antigen-expressing cancer cell together with the cytotoxic potency of the payload. Much success stems from the rational design of "toxic warheads", chemically linked to antibodies, and from fine-tuning the intricate properties of chemical linkers. Here, we focus on the antibody moiety of ADCs, dissecting the impact of Fab, linkers, isotype and Fc structure on the anti-tumoral and immune-activating functions of ADCs.

View Article and Find Full Text PDF

DNA footprinting and melting experiments have been used to examine the sequence-specific binding of C8-conjugates of pyrrolobenzodiazepines (PBDs) and benzofused rings including benzothiophene and benzofuran, which are attached using pyrrole- or imidazole-containing linkers. The conjugates modulate the covalent attachment points of the PBDs, so that they bind best to guanines flanked by A/T-rich sequences on either the 5'- or 3'-side. The linker affects the binding, and pyrrole produces larger changes than imidazole.

View Article and Find Full Text PDF

Anthramycin (ANT) was the first pyrrolobenzodiazepine (PBD) molecule to be isolated, and is a potent cytotoxic agent. Although the PBD family has been investigated for use in systemic chemotherapy, their application in the management of actinic keratoses (AK) or skin cancer has not been investigated to date. In the present work, anthramycin (ANT) was selected as a model PBD compound, and the skin penetration of the molecule was investigated using conventional Franz diffusion cells.

View Article and Find Full Text PDF

The pyrrolobenzodiazepine (PBD) and duocarmycin families are DNA-interactive agents that covalently bond to guanine (G) and adenine (A) bases, respectively, and that have been joined together to create synthetic dimers capable of cross-linking G-G, A-A, and G-A bases. Three G-A alkylating dimers have been reported in publications to date, with defined DNA-binding sites proposed for two of them. In this study we have used molecular dynamics simulations to elucidate preferred DNA-binding sites for the three published molecular types.

View Article and Find Full Text PDF

The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a family of sequence-selective DNA minor-groove binding agents that form a covalent aminal bond between their C11-position and the C2-NH groups of guanine bases. The first example of a PBD monomer, the natural product anthramycin, was discovered in the 1960s, and the best known PBD dimer, SJG-136 (also known as SG2000, NSC 694501 or BN2629), was synthesized in the 1990s and has recently completed Phase II clinical trials in patients with leukaemia and ovarian cancer. More recently, PBD dimer analogues are being attached to tumor-targeting antibodies to create antibody-drug conjugates (ADCs), a number of which are now in clinical trials, with many others in pre-clinical development.

View Article and Find Full Text PDF

Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality.

View Article and Find Full Text PDF

Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs.

View Article and Find Full Text PDF

Background: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent.

View Article and Find Full Text PDF

The global incidence of skin cancer and actinic keratosis (AK) has increased dramatically in recent years. Although many tumours are treated with surgery or radiotherapy topical therapy has a place in the management of certain superficial skin neoplasms and AK. This review considers skin physiology, non-melanoma skin cancer (NMSC), the relationship between AK and skin cancer and drugs administered topically for these conditions.

View Article and Find Full Text PDF

The pyrrolobenzodiazepines (PBDs) are a family of covalent-binding DNA-interactive minor-groove binding agents with a thermodynamic preference for binding to 5'-Pu-G-Pu-3' sequences (Pu = Purine) but a kinetic preference for 5'-Py-G-Py-3' (Py = Pyrimidine). Using HPLC/MS methodology and a range of designed hairpin-forming oligonucleotides, the kinetics of reaction of a C8-bis-pyrrole pyrrolobenzodiazepine (PBD) conjugate (GWL-78, 2) with sixteen isomeric oligonucleotides has been evaluated, each containing a single PBD binding site in one of two locations. The PBD-binding base-pair triplets were designed to include every possible combination of A and T bases adjacent to the covalently-reacting guanine, with the set of hairpins consisting of isomeric pairs containing the same sequence in the hairpin stem but with either hexaethylene glycol (HEG) or TTT loops.

View Article and Find Full Text PDF

Novel 1-(2-aryl-2-adamantyl)piperazine derivatives have been synthesized and evaluated in vitro for their antitumor properties against HeLa cervical carcinoma, MDA MB 231 breast cancer, MIA PaCa2 pancreatic cancer, and NCI H1975 non-small cell lung cancer. The parent piperazine 6 was found to exhibit a reasonable activity toward the HeLa and MDA MB 231 tumor cell lines (IC50= 9.2 and 8.

View Article and Find Full Text PDF

The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs) are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920) reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS), Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA.

View Article and Find Full Text PDF

The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a group of sequence-selective, DNA minor-groove binding agents that covalently attach to guanine residues. Originally derived from Streptomyces species, a number of naturally occurring PBD monomers exist with varying A-Ring and C2-substituents. One such agent, sibiromycin, is unusual in having a glycosyl residue (sibirosamine) at its A-Ring C7-position.

View Article and Find Full Text PDF

The binding of nuclear factor Y (NF-Y) to inverted CCAAT boxes (ICBs) within the promoter region of DNA topoisomerase IIα results in control of cell differentiation and cell cycle progression. Thus, NF-Y inhibitory small molecules could be employed to inhibit the replication of cancer cells. A library of pyrrolobenzodiazepine (PBD) C8-conjugates consisting of one PBD unit attached to tri-heterocyclic polyamide fragments was designed and synthesized.

View Article and Find Full Text PDF

STAT3 (Signal Transducer and Activator of Transcription factor 3) is constitutively active in a wide range of human tumours. Stattic is one of the first non-peptidic small molecules reported to inhibit formation of the STAT3:STAT3 protein dimer complex. A mass spectrometry method has been developed to investigate the binding of Stattic to the un-phosphorylated STAT3βtc (U-STAT3) protein.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionppgcis4tnfnek10cngg4md7g0g3tebvk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once