Publications by authors named "David E Morrissey"

New particles in theories beyond the standard model can manifest as stable relics that interact strongly with visible matter and make up a small fraction of the total dark matter abundance. Such particles represent an interesting physics target since they can evade existing bounds from direct detection due to their rapid thermalization in high-density environments. In this work we point out that their annihilation to visible matter inside large-volume neutrino telescopes can provide a new way to constrain or discover such particles.

View Article and Find Full Text PDF

A standard expectation of primordial cosmological inflation is that it dilutes all relics created before its onset to unobservable levels. We present a counterexample to this expectation by demonstrating that a network of cosmic strings diluted by inflation can regrow to a level that is potentially observable today in gravitational waves (GWs). In contrast to undiluted cosmic strings, whose primary GW signals are typically in the form of a stochastic GW background, the leading signal from a diluted cosmic string network can be distinctive bursts of GWs within the sensitivity reach of current and future GW observatories.

View Article and Find Full Text PDF

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates.

View Article and Find Full Text PDF

We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector.

View Article and Find Full Text PDF