Profound neuropeptide diversity characterizes the nematode nervous system, but it has proven challenging to match neuropeptide G protein-coupled receptors (GPCR) with their cognate ligands in heterologous systems. We have expressed the Caenorhabditis elegans GPCR encoded in the locus T19F4.1, previously matched with FMRFamide-like peptides encoded on the flp-2 precursor gene, in mammalian cells and in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFStreptococcus suis is an important swine pathogen and a zoonotic agent. Differences in virulence have been noted among the 33 described serotypes, serotype 2 being considered the most virulent. In this study, we aimed at assessing the serotype distribution and the production of virulence-associated markers by strains recovered from diseased pigs in the United States (U.
View Article and Find Full Text PDFTwo alternatively spliced variants of an orphan Caenorhabditis elegans G-protein-coupled receptors (GPCRs; Y58G8A.4a and Y58G8A.4b) were cloned and functionally expressed in Chinese hamster ovary (CHO) cells.
View Article and Find Full Text PDFStreptococcus suis is an economically important, zoonotic pathogen causing death and disease in swine. The objectives of this study were to develop a signature-tagged mutagenesis (STM) system for S. suis serotype 2 and to identify genes required for in vivo virulence.
View Article and Find Full Text PDFThis report describes the cloning and functional annotation of a Caenorhabditis elegans orphan G-protein-coupled receptor (GPCR) (C10C6.2) as a receptor for the FMRFamide-related peptides (FaRPs) encoded on the flp15 precursor gene, leading to the receptor designation FLP15-R. A cDNA encoding C10C6.
View Article and Find Full Text PDFNatural variations of wild Caenorhabditis elegans isolates having either Phe-215 or Val-215 in NPR-1, a putative orphan neuropeptide Y-like G protein-coupled receptor, result in either "social" or "solitary" feeding behaviors (de Bono, M., and Bargmann, C. I.
View Article and Find Full Text PDFDescribed in this report is a successful cloning and characterization of a functionally active Drosophila sulfakinin receptor designated DSK-R1. When expressed in mammalian cells, DSK-R1 was activated by a sulfated, Met(7-->Leu(7)-substituted analog of drosulfakinin-1, FDDY(SO(3)H)GHLRF-NH(2) ([Leu(7)]-DSK-1S). The interaction of [Leu(7)]-DSK-1S with DSK-R1 led to a dose-dependent intracellular calcium increase with an EC(50) in the low nanomolar range.
View Article and Find Full Text PDF