Background: CYAD-01 is an autologous chimeric antigen receptor (CAR) T-cell product based on the natural killer (NK) group 2D (NKG2D) receptor, which binds eight ligands that are overexpressed in a wide range of haematological malignancies but are largely absent on non-neoplastic cells. Initial clinical evaluation of a single infusion of CYAD-01 at a low dose in patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, and multiple myeloma supported the feasibility of the approach and prompted further evaluation of CYAD-01. The aim of the present study was to determine the safety and recommended phase 2 dosing of CYAD-01 administered without preconditioning or bridging chemotherapy.
View Article and Find Full Text PDFAllogeneic chimeric antigen receptor (CAR) T holds the promise of taking this therapeutic approach to broader patient populations while avoiding the intensive manufacturing demands of autologous cell products. One limitation to delivering an allogeneic CAR T is T-cell receptor (TCR) driven toxicity. In this work, the expression of a peptide to interfere with TCR signaling was assessed for the generation of allogeneic CAR T cells.
View Article and Find Full Text PDFThe B7 family member, B7H6, is a ligand for the natural killer cell receptor NKp30. B7H6 is hardly expressed on normal tissues, but undergoes upregulation on different types of tumors, implicating it as an attractive target for cancer immunotherapy. The molecular mechanisms that control B7H6 expression are poorly understood.
View Article and Find Full Text PDFChimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological setting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from B cell malignancies.
View Article and Find Full Text PDFChimeric Antigen Receptor (CAR) T cells expressing the fusion of the NKG2D protein with CD3ζ (NKG2D-CAR T Cells) acquire a specificity for stress-induced ligands expressed on hematological and solid cancers. However, these stress ligands are also transiently expressed by activated T cells implying that NKG2D-based T cells may undergo self-killing (fratricide) during cell manufacturing or during the freeze thaw cycle prior to infusion in patients. To avoid target-driven fratricide and enable the production of NKG2D-CAR T cells for clinical application, two distinct approaches were investigated.
View Article and Find Full Text PDFNKG2D ligands are widely expressed in solid and hematologic malignancies but absent or poorly expressed on healthy tissues. We conducted a phase I dose-escalation study to evaluate the safety and feasibility of a single infusion of NKG2D-chimeric antigen receptor (CAR) T cells, without lymphodepleting conditioning in subjects with acute myeloid leukemia/myelodysplastic syndrome or relapsed/refractory multiple myeloma. Autologous T cells were transfected with a γ-retroviral vector encoding a CAR fusing human NKG2D with the CD3ζ signaling domain.
View Article and Find Full Text PDFThe astonishing clinical success of CD19 chimeric antigen receptor (CAR) T-cell therapy has led to the approval of two second generation chimeric antigen receptors (CARs) for acute lymphoblastic leukemia (ALL) andnon-Hodgkin lymphoma (NHL). The focus of the field is now on emulating these successes in other hematological malignancies where less impressive complete response rates are observed. Further engineering of CAR T cells or co-administration of other treatment modalities may successfully overcome obstacles to successful therapy in other cancer settings.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the leading cause of gynaecological cancer-related death in Europe. Although most patients achieve an initial complete response with first-line treatment, recurrence occurs in more than 80% of cases. Thus, there is a clear unmet need for novel second-line treatments.
View Article and Find Full Text PDFCelyad recently initiated several clinical trials with the CYAD-01 product, a natural killer group 2D (NKG2D)-based chimeric antigen receptor (CAR), in both solid and hematologic tumor types. This review discusses the unique properties of CYAD-01, expecting to provide a new paradigm to fight against solid tumors.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapy represents a significant advancement in cancer therapy. Larger studies have shown ∼90% complete remission rates against chemoresistant and/or refractory CD19 leukemia or lymphoma. Effective CAR T cell therapy is highly dependent on lymphodepleting preconditioning, which is achieved through chemotherapy or radiotherapy that carries with it significant toxicities.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T-cell therapy has recently been recommended for approval for certain B-cell malignancies bringing the approach closer to mainstream cancer treatment. This rapid rise to prominence has been driven by impressive clinical results and the means to successfully commercialize the approach now being actively pursued. The current success of CAR T cells in B-cell malignancies relies upon the absolute lineage specificity of the CD19 antigen.
View Article and Find Full Text PDFThe primary aim of this clinical trial was to determine the feasibility of delivering first-generation CAR T cell therapy to patients with advanced, CEACAM5 malignancy. Secondary aims were to assess clinical efficacy, immune effector function and optimal dose of CAR T cells. Three cohorts of patients received increasing doses of CEACAM5-specific CAR T cells after fludarabine pre-conditioning plus systemic IL2 support post T cell infusion.
View Article and Find Full Text PDFChimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers.
View Article and Find Full Text PDFBackground: Adoptive T cell immunotherapy (ATCT) for cancer entails infusing patients with T cells that recognise and destroy tumour cells. Efficient engraftment of T cells and persistence in the circulation correlate with favourable clinical outcomes. T cells of early differentiation possess an increased capacity for proliferation and therefore persistence, using these cells for ATCT could therefore lead to improved clinical outcomes.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells form part of a broad wave of immunotherapies that are showing promise in early phase cancer clinical trials. This clinical delivery has been based upon preclinical efficacy testing that confirmed the proof of principle of the therapy. However, CAR T-cell therapy does not exist alone as T cells are generally given in combination with patient preconditioning, most commonly in the form of chemotherapy, and may also include systemic cytokine support, both of which are associated with toxicity.
View Article and Find Full Text PDFAdoptive T-cell therapy is delivering objective clinical responses across a number of cancer indications in the early phase clinical setting. Much of this clinical activity is taking place at major clinical academic centers across the United States. This review focuses upon cancer-focused cell therapy activity within the United Kingdom as a contribution to the 2015 British Society of Gene and Cell Therapy annual general meeting.
View Article and Find Full Text PDFObjective: Combination of immunotherapy with tyrosine kinase inhibitors (TKIs) has been used with some success for the treatment of metastatic renal cell carcinoma. Herein we evaluate the in vitro effect of high-dose interleukin-2 (HDIL-2) and pazopanib or sunitinib on the lymphocyte function and on induction of apoptosis in renal cell carcinoma (RCC) cell lines.
Methods: Peripheral blood mononuclear cells (PBMCs) isolated from healthy donors or RCC patients were treated with different HDIL-2/TKI combinations.
T cells engrafted with chimeric AgRs (CAR) are showing exciting potential for targeting B cell malignancies in early-phase clinical trials. To determine whether the second-generation CAR was essential for optimal antitumor activity, two CD28-based CAR constructs targeting CD19 were tested for their ability to redirect mouse T cell function against established B cell lymphoma in a BALB/c syngeneic model system. T cells armed with either CAR eliminated A20 B cell lymphoma in vivo; however, one construct induced a T cell dose-dependent acute toxicity associated with a raised serum Th1 type cytokine profile on transfer into preconditioned mice.
View Article and Find Full Text PDFGenetic modification of primary mouse T cells with chimeric antigen receptors (CAR) has emerged as an important tool for optimizing adoptive T cell immunotherapy strategies. However, limitations in current protocols for generating highly pure and sufficient numbers of enriched effector and helper CAR(+) T cell subsets remain problematic. Here, we describe a new retroviral transduction protocol for successfully generating transduced CD8(+) and CD4(+) T lymphocytes for in vitro and in vivo characterization.
View Article and Find Full Text PDFBlockbuster antibody therapies have catapulted immune-based approaches to treat cancer into the consciousness of mainstay clinical research. On the back of this, other emerging immune-based therapies are providing great promise. T-cell therapy is one such area where recent trials using T cells genetically modified to express an antibody-based chimeric antigen receptor (CAR) targeted against the CD19 antigen have demonstrated impressive responses when adoptively transferred to patients with advanced chronic lymphocytic leukemia.
View Article and Find Full Text PDFAdoptive cell therapy employing gene-modified T-cells expressing chimeric antigen receptors (CARs) has shown promising preclinical activity in a range of model systems and is now being tested in the clinical setting. The manufacture of CAR T-cells requires compliance with national and European regulations for the production of medicinal products. We established such a compliant process to produce T-cells armed with a first-generation CAR specific for carcinoembryonic antigen (CEA).
View Article and Find Full Text PDFThe clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen.
View Article and Find Full Text PDF