Immunoslot blot assays have been used for the analysis of many DNA adducts, but problems are frequently encountered in achieving reproducible results. Each step of the assay was examined systematically, and it was found that the major problems are in the DNA fragmentation step and the use of the manifold apparatus. Optimization was performed on both the malondialdehyde-deoxyguanosine (M(1)dG) adduct and the O(6)-carboxymethyl-deoxyguanosine (O(6)CMdG) adduct to demonstrate the applicability to other DNA adducts.
View Article and Find Full Text PDFTo accurately quantify the number of single-strand breaks (SSBs) induced in plasmid DNA molecules after irradiation, a new type of assay methodology has been explored. The new method is based on the TUNEL (terminal deoxynucleotide transferase dUTP nick end-labeling) assay that was adopted for use under ELISA (enzyme-linked immunosorbent assay) conditions. The assay was found to both improve the quantification and reduce the uncertainties in measurement of SSBs compared with the commonly used agarose gel electrophoresis (AGE) method.
View Article and Find Full Text PDFThe formation of deoxyribonucleic acid (DNA) adducts can have important and adverse consequences for cellular and whole organism function. Available methods for identification of DNA damage and quantification of adducts are reviewed. Analyses can be performed on various samples including tissues, isolated cells, and intact or hydrolyzed (digested) DNA from a variety of biological samples of interest for monitoring in humans.
View Article and Find Full Text PDFA general and unambiguous approach has been developed for structural elucidation of modified purine nucleosides using NMR spectroscopy. Systematic assignment of proton and carbon signals of modified nucleosides was firmly established by COSY and the anomerism of the glycosidic linkage of synthetic nucleosides clearly elucidated by NOESY experiments. Characteristic properties of 15N-isotopic labelling at specific positions of nucleosides were also employed for structural studies.
View Article and Find Full Text PDFNitrosated glycine derivatives react with DNA to form O6-carboxymethyl-2'-deoxyguanosine (O6-CMdG) and O6-methyl-2'-deoxyguanosine (O6-MedG) adducts concurrently. O6-CMdG is not repaired by O6-alkylguanine alkyltransferases and might be expected to lead to mutations via a similar mechanism to O6-MedG. Potassium diazoacetate (KDA) is a stable form of nitrosated glycine and its ability to induce mutations in the p53 gene in a functional yeast assay was studied.
View Article and Find Full Text PDFRed meat is associated with increased risk of colorectal cancer and increases the endogenous formation of N-nitrosocompounds (NOC). To investigate the genotoxic effects of NOC arising from red meat consumption, human volunteers were fed high (420 g) red meat, vegetarian, and high red meat, high-fiber diets for 15 days in a randomized crossover design while living in a volunteer suite, where food was carefully controlled and all specimens were collected. In 21 volunteers, there was a consistent and significant (P < 0.
View Article and Find Full Text PDFSite-specific modification of the N1-position of purine was explored at the nucleoside and oligomer levels. 2'-deoxyinosine was converted into an N1-2,4-dinitrophenyl derivative 2 that was readily transformed to the desired N1-substituted 2'-deoxyinosine analogues. This approach was used to develop a post-synthetic method for the modification of the endocyclic N1-position of purine at the oligomer level.
View Article and Find Full Text PDFPrevious research has shown that a range of nitrosated glycine derivatives react with DNA to form O6-carboxymethylguanine and O6-methylguanine DNA adducts [Harrison et al. (1999) Chem. Res.
View Article and Find Full Text PDFGenomic DNA is under continuous assault by various chemical species produced by normal cellular metabolism. In addition, exposure to exogenous agents adds further insult. Modification of DNA by chemical carcinogens has long been recognized as an early event in carcinogenesis and many DNA adducts have been characterized.
View Article and Find Full Text PDFColorectal biopsies from normal mucosa of participants in the United Kingdom Flexible Sigmoidoscopy Trial and European Prospective Investigation on Cancer (EPIC; n = 162) were analyzed for the presence of malondialdehyde-deoxyguanosine (M(1)-dG), a DNA adduct derived from lipid peroxidation. The aim was to investigate whether dietary factors can modulate M(1)-dG levels and whether M(1)-dG in normal mucosa is a risk factor for colorectal adenomas. Samples were analyzed using a sensitive immunoblot blot assay.
View Article and Find Full Text PDF