Publications by authors named "David E Crane"

Cerebrovascular reactivity (CVR) is a dynamic measure of the cerebral blood vessel response to vasoactive stimulus. Conventional CVR measures amplitude changes in the blood-oxygenation-level-dependent (BOLD) signal per unit change in end-tidal CO (P CO ), effectively discarding potential timing information. This study proposes a deconvolution procedure to characterize CVR responses based on a vascular transfer function (VTF) that separates amplitude and timing CVR effects.

View Article and Find Full Text PDF

Purpose: Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural magnetic resonance imaging (MRI) measures of cortical integrity are limited, although functional techniques such as pseudo-continuous arterial spin labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment.

View Article and Find Full Text PDF

Cerebral White Matter Hyperintensities (WMH) are associated with vascular risk factors and age-related cognitive decline. WMH have primarily been associated with global white matter and gray matter (GM) changes and less is known about regional effects in GM. The purpose of this study was to test for an association between WMH and two GM imaging measures: cerebral blood flow (CBF) and voxel-based morphometry (VBM).

View Article and Find Full Text PDF

The mechanisms supporting functional improvement by aerobic exercise following stroke remain incompletely understood. This study investigated how cycling intensity and aerobic fitness influence cerebral blood flow (CBF) following a single exercise session. Thirteen community-living stroke survivors performed 20 min of semi-recumbent cycling at low and moderate intensities (40-50 and 60-70 % of heart rate reserve, respectively) as determined from an exercise stress test.

View Article and Find Full Text PDF

Recently, multiple genome-wide association studies have identified a genetic polymorphism (CACNA1C rs1006737) that appears to confer susceptibility for BD. This article aims to summarize the existing literature regarding the impact of rs1006737 on functional and structural neuroimaging intermediate phenotypes. Twenty eight articles, representing 2486 healthy participants, 369 patients with BD and 104 healthy first-degree relatives of patients with BD, are incorporated.

View Article and Find Full Text PDF

Purpose: White matter hyperintensities (WMH) are prevalent among older adults and are often associated with cognitive decline and increased risk of stroke and dementia. Vascular risk factors (VRFs) are linked to WMH, yet the impact of multiple VRFs on gray matter function is still unclear. The goal of this study was to test for associations between the number of VRFs and cerebrovascular reactivity (CVR) and resting state (RS) coactivation among individuals with WMH.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of rejecting intermediate cerebral blood flow (CBF) images that are adversely affected by head motion during an arterial spin labeling (ASL) acquisition.

Materials And Methods: Eighty participants were recruited, representing a wide age range (14-90 years) and heterogeneous cerebrovascular health conditions including bipolar disorder, chronic stroke, and moderate to severe white matter hyperintensities of presumed vascular origin. Pseudocontinuous ASL and T1 -weigthed anatomical images were acquired on a 3T scanner.

View Article and Find Full Text PDF

Purpose: Venous oxygenation (Yv ) is an important index of brain physiology and may be indicative of brain diseases. A T2 -relaxation-under-spin-tagging (TRUST) MRI technique was recently developed to measure Yv . A multisite evaluation of this technique would be an important step toward broader availability and potential clinical utilizations of Yv measures.

View Article and Find Full Text PDF

Background: Voxel-based analyses are pervasive across the range of neuroimaging techniques. In the case of perfusion imaging using arterial spin labelling (ASL), a low signal-to-noise technique, there is a tradeoff between the contrast-to-noise required to detect a perfusion abnormality and its spatial localisation. In exploratory studies, the use of an a priori region of interest (ROI), which has the benefit of averaging multiple voxels, may not be justified.

View Article and Find Full Text PDF

Habitual long term physical activity is known to have beneficial cognitive, structural, and neuro-protective brain effects, but to date there is limited knowledge on whether a single session of exercise can alter the brain's functional connectivity, as assessed by resting-state functional magnetic resonance imaging (rs-fMRI). The primary objective of this study was to characterize potential session effects in resting-state networks (RSNs). We examined the acute effects of exercise on the functional connectivity of young healthy adults (N = 15) by collecting rs-fMRI before and after 20 min of moderate intensity aerobic exercise and compared this with a no-exercise control group (N = 15).

View Article and Find Full Text PDF

Purpose: Physical activity is associated with positive effects on the brain but there is a paucity of clinical neuroimaging data in patients with coronary artery disease (CAD), a cardiovascular condition associated with grey matter loss. The purpose of this study was to determine which brain regions are impacted by cardiopulmonary fitness and with the change in fitness after 6 months of exercise-based cardiac rehabilitation.

Methods: CAD patients underwent magnetic resonance imaging at baseline, and peak volume of oxygen uptake during exercise testing (VO2Peak) was measured at baseline and after 6 months of training.

View Article and Find Full Text PDF

Purpose: Bolus dispersion in DSC-MRI can lead to errors in cerebral blood flow (CBF) estimation by up to 70% when using singular value decomposition analysis. However, it might be possible to correct for dispersion using two alternative methods: the vascular model (VM) and control point interpolation (CPI). Additionally, these approaches potentially provide a means to quantify the microvascular residue function.

View Article and Find Full Text PDF

Purpose: An exponential residue function is commonly used in numerical simulations to assess the accuracy of perfusion quantification using dynamic susceptibility contrast (DSC) MRI. Although this might be a reasonable assumption for normal tissue, microvascular hemodynamics are likely to be significantly altered in pathology. Thus the exponential function may no longer be appropriate and the estimated accuracy of DSC-MRI quantification might be inappropriate.

View Article and Find Full Text PDF

Purpose: Despite the generally accepted view that aerobic exercise can have positive effects on brain health, few studies have measured brain responses to exercise over a short time span. The purpose of this study was to examine the impact within one hour of a single bout of exercise on brain perfusion and neuronal activation.

Methods: Healthy adults (n = 16; age range: 20-35 yrs) were scanned using Magnetic Resonance Imaging (MRI) before and after 20 minutes of exercise at 70% of their age-predicted maximal heart rate.

View Article and Find Full Text PDF

Purpose: To evaluate two dynamic susceptibility contrast (DSC) quantification methods in symptomatic carotid artery disease patients undergoing carotid endarterectomy (CEA) surgery by comparing methods directly and assessing the reliability of each method in the hemisphere contralateral to surgery.

Materials And Methods: Absolute cerebral blood flow (CBF) and volume (CBV) was calculated in putamen and sensorimotor gray matter of 17 patients using two methods: 1) The Bookend method that scales relative DSC images to CBV values calculated from the ratio of pre- and postcontrast T1-weighted images, and 2) the Tail-scaling method that uses the ratio of area under the tails of the venous and arterial concentration time-courses to scale the DSC images.

Results: There was a positive correlation between the methods with significant correlation post-CEA (P < 0.

View Article and Find Full Text PDF

DSC-MRI analysis is based on tracer kinetic theory and typically involves the deconvolution of the MRI signal in tissue with an arterial input function (AIF), which is an ill-posed inverse problem. The current standard singular value decomposition (SVD) method typically underestimates perfusion and introduces non-physiological oscillations in the resulting residue function. An alternative vascular model (VM) based approach permits only a restricted family of shapes for the residue function, which might not be appropriate in pathologies like stroke.

View Article and Find Full Text PDF