Publications by authors named "David Drijkoningen"

Traumatic brain injury (TBI) affects structural connectivity, triggering the reorganization of structural-functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) often leads to impairments in gait performance. However, the underlying neurostructural pathology of these gait deficits is poorly understood. We aimed to investigate regional gray matter (GM) volume in young moderate-to-severe TBI participants (n = 19; age 13 years 11 months ±3 years 1 month), compared with typically developing (TD) participants (n = 30; 14 years 10 months ±2 years 2 months), and assess whether reduced volume was related to impaired gait performance in TBI participants.

View Article and Find Full Text PDF

Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) can lead to deficits in gait and posture, which are often asymmetric. A possible factor mediating these deficits may be asymmetry in strength of the leg muscles. However, muscle strength in the lower extremities has rarely been investigated in (young) TBI patients.

View Article and Find Full Text PDF

We investigated whether balance control in young TBI patients can be promoted by an 8-week balance training program and whether this is associated with neuroplastic alterations in brain structure. The cerebellum and cerebellar peduncles were selected as regions of interest because of their importance in postural control as well as their vulnerability to brain injury. Young patients with moderate to severe TBI and typically developing (TD) subjects participated in balance training using PC-based portable balancers with storage of training data and real-time visual feedback.

View Article and Find Full Text PDF

Our previous study provided some evidence for the relationship between abnormal structural connectivity and poor balance performance in young traumatic axonal injury (TAI) patients. An enhanced understanding of the functional connectivity following TAI may allow targeted treatments geared toward improving brain function and postural control. Twelve patients with TAI and 28 normally developing children (aged 9-19 years) performed the sensory organization test (SOT) protocol of the EquiTest (Neurocom).

View Article and Find Full Text PDF

Bimanual actions are ubiquitous in daily life. Many coordinated movements of the upper extremities rely on precise timing, which requires efficient interhemispheric communication via the corpus callosum (CC). As the CC in particular is known to be vulnerable to traumatic brain injury (TBI), furthering our understanding of its structure-function association is highly valuable for TBI diagnostics and prognosis.

View Article and Find Full Text PDF