Publications by authors named "David Dodoo-Arhin"

Microplastic ingestion by marine organisms presents a challenge to both ecosystem functioning and human health. We characterized microplastic abundance, shape, size, and polymer types ingested by the West African mangrove oyster, Crassostrea tulipa (Lamarck, 1819) sampled from estuaries and lagoons from the Gambia, Sierra Leone, Ghana, Benin, and Nigeria using optical microscopy and Fourier transform infrared (FTIR) techniques. A total of 780 microplastics were isolated in the whole tissues of the 250 oysters (n = 50 oysters per country).

View Article and Find Full Text PDF

Despite the attractive combinations of cell/surface interactions, biocompatibility, and good mechanical properties of Ti-6Al-4V, there is still a need to enhance the early stages of cell/surface integration that are associated with the implantation of biomedical devices into the human body. This paper presents a novel, easy and reproducible method of nanoscale and nanostructured hydroxyapatite (HA) coatings on Ti-6Al-4V. The resulting nanoscale coatings/nanostructures are characterized using a combination of Raman spectroscopy, scanning electron microscopy equipped with energy dispersive x-ray spectroscopy.

View Article and Find Full Text PDF

The purpose of this data article is to report the quantum mechanical analysis by generalized gradient approximation (GGA) exchange-correlation functional using density functional theory (DFT). The predictions were based on the elastic constants and mechanical properties of stoichiometric hydroxyapatite (HAp) crystal. The elastic stiffness constants in hexagonal symmetry were obtained by fitting the Hookes' law for the energy-strain and stress-stain relations.

View Article and Find Full Text PDF

Research and academia have been recently affected by the Coronavirus (COVID-19), and physical classrooms and laboratory experiments have been affected significantly due to the recent laboratory closures. This has led to innovative approaches to curb this problem. To address these difficulties in teaching bioengineering related courses that is of significant interest to students of the Faculty of Engineering in Ahmadu Bello University, Zaria, Nigeria, and of course, useful for engineering-based higher education institutions (HEI), a transitional pedagogy: Communicate, Active, Collaborate, Problem-based Solving, Learning and Assessment (CACPLA), which encompasses blended learning, was developed as a new teaching and learning strategy.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are known to survive on high-touch surfaces for days, weeks, and months, contributing to the rise in nosocomial infections. Inducing antibacterial property in such surfaces can presumably reduce the overall microbial burden and subsequent nosocomial infections in hygiene critical environments. In the present study, a one-pot sol-gel process has been deployed to incorporate silver (Ag) and quaternary ammonium salt (QUAT) bactericides in a polymethylhydrosiloxane (PMHS) matrix.

View Article and Find Full Text PDF

Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry.

View Article and Find Full Text PDF

Carbonated hydroxyapatite (CHAp) adsorbent material was prepared from snail shells and phosphate-containing solution using a wet chemical deposition method. The CHAp adsorbent material was investigated to adsorb aqua Fe(II) complex; [Fe(HO)] from simulated iron contaminated water for potential iron remediation application. The CHAp was characterized before and after adsorption using infrared (IR) and Raman spectroscopy.

View Article and Find Full Text PDF

Phosgene (COCl), a valuable industrial compound, maybe a public safety and health risk due to potential abuse and possible accidental spillage. Conventional techniques suffer from issues related to procedural complexity and sensitivity. Therefore, there is a need for the development of simple and highly sensitive techniques that overcome these challenges.

View Article and Find Full Text PDF

The generation of reactive oxygen species (ROS) during the photolysis of sunscreens and sun blockers poses consumer safety concerns while necessitating proper identification and quantitation of ROS species. Here, a colorimetric sensing approach has been developed based on a molecular probe (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2-H-tetrazolium-5-carboxanilide (XTT) tetrazolium salt) to quantitatively measure the photo-induced superoxide anion radicals (O) generated from the photocatalysis of zinc oxide nanoparticles (ZnO-NPs) in aqueous solutions. Note that superoxide anion radicals are assumed to be the main reactive oxygen species (ROS) generated from such photocatalysis.

View Article and Find Full Text PDF

Nanostructured mesoporous titanium dioxide (TiO) particles with high specific surface area and average crystallite domain sizes within 2 nm and 30 nm have been prepared the sol-gel and hydrothermal procedures. The characteristics of produced nanoparticles have been tested using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller () surface area analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Raman Spectroscopy as a function of temperature for their microstructural, porosity, morphological, structural and absorption properties. The as-synthesized TiO nanostructures were attempted as catalysts in Rhodamine B and Sudan III dyes' photocatalytic decomposition in a batch reactor with the assistance of Ultra Violet (UV) light.

View Article and Find Full Text PDF

This paper presents the effect of modified halloysite nanotubes on the sustained drug release mechanisms of sodium salicylate. Acid treatment and composite polymer-halloysite modification techniques were adopted in this study. After each modification, sodium salicylate drug was loaded, and in vitro release properties were evaluated and compared with the raw unmodified halloysite nanotubes.

View Article and Find Full Text PDF

AgPO photocatalyst has attracted interest of the scientific community in recent times due to its reported high efficiency for water oxidation and dye degradation. However, AgPO photo-corrodes if electron accepter such as AgNO is not used as scavenger. Synthesis of efficient AgPO followed by a simple protocol for regeneration of the photocatalyst is therefore a prerequisite for practical application.

View Article and Find Full Text PDF