Publications by authors named "David Djajaputra"

Purpose: To report the characteristics of pancreas motion as tracked using implanted fiducials during radiotherapy treatments with CyberKnife.

Methods And Materials: Twenty-nine patients with pancreas cancer treated using CyberKnife system were retrospectively selected for this study. During the treatment, the deviation is examined every 3-4 nodes (~45 s interval) and compensated by the robot.

View Article and Find Full Text PDF

Emerging Technologies in Medicine. Anastasio J., La Riviere P.

View Article and Find Full Text PDF

Real-time stereovision-guidance has been introduced for efficient and convenient fractionated stereotactic radiotherapy (FSR) and image-guided intensity-modulated radiation therapy (IMRT). This first pilot study is to clinically evaluate its accuracy and precision as well as impact on treatment doses. Sixty-one FSR patients wearing stereotactic masks (SMs) and nine IMRT patients wearing flexible masks (FMs), were accrued.

View Article and Find Full Text PDF

Purpose: To report the characteristics of prostate motion as tracked by the stereoscopic X-ray images of the implanted fiducials during hypofractionated radiotherapy with CyberKnife.

Methods And Materials: Twenty-one patients with prostate cancer who were treated with CyberKnife between January 2005 and September 2007 were selected for this retrospective study. The CyberKnife uses a stereoscopic X-ray system to obtain the position of the prostate target through the monitoring of implanted gold fiducial markers.

View Article and Find Full Text PDF

Two main approaches are commonly used in the literature for computing the equivalent uniform dose (EUD) in radiotherapy. The first approach is based on the cell-survival curve as defined in the linear-quadratic model. The second approach assumes that EUD can be computed as the generalized mean of the dose distribution with an appropriate fitting parameter.

View Article and Find Full Text PDF

In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception.

View Article and Find Full Text PDF

Traditional external beam radiotherapy of gynecological cancer consists of a 3D, four-field-box technique. The radiation treatment area is a large region of normal tissue, with greater inhomogeneity over the treatment volume, which could benefit more with intensity-modulated radiation therapy (IMRT). This is a case report of IMRT planning for a patient with endometrial cancer.

View Article and Find Full Text PDF

With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans.

View Article and Find Full Text PDF

Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter.

View Article and Find Full Text PDF

We describe an approach for external beam radiotherapy of breast cancer that utilizes the three-dimensional (3D) surface information of the breast. The surface data of the breast are obtained from a 3D optical camera that is rigidly mounted on the ceiling of the treatment vault. This 3D camera utilizes light in the visible range therefore it introduces no ionization radiation to the patient.

View Article and Find Full Text PDF

Dose measurement for narrow stereotactic beams and intensity modulation radiotherapy beamlets is difficult and error-prone due to the lack of lateral electron equilibrium. A small detector position error and finite sensitive volume as well as the nonfocus collimation could result in considerable (> 10%) measurement errors. A new method is introduced here to measure the dose and error components so that the accuracy and precision of the dose measurement can be improved.

View Article and Find Full Text PDF

This paper describes the algorithm and examines the performance of an intensity-modulated radiation therapy (IMRT) beam-angle optimization (BAO) system. In this algorithm successive sets of beam angles are selected from a set of predefined directions using a fast simulated annealing (FSA) algorithm. An IMRT beam-profile optimization is performed on each generated set of beams.

View Article and Find Full Text PDF

This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan.

View Article and Find Full Text PDF

Currently, most intensity-modulated radiation therapy systems use dose-volume (DV)-based objectives. Although acceptable plans can be generated using these objectives, much trial and error is necessary to plan complex cases with many structures because numerous parameters need to be adjusted. An objective function that makes use of a generalized equivalent uniform dose (gEUD) was developed recently that has the advantage of involving simple formulae and fewer parameters.

View Article and Find Full Text PDF