The conformational landscape and ring-puckering properties of ε-caprolactone have been analyzed by using microwave spectroscopy and quantum chemical calculations. Two conformers were detected in a supersonic jet expansion, the most stable form being a chair containing the ester group in its rectangular flap. This conformation benefits from reduced CH2 bond eclipsing and angle strain, while π-electron delocalization in the ester group is increased.
View Article and Find Full Text PDFThe conformational and structural properties of the bicyclic quinolizidine alkaloid (-)-lupinine have been investigated in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum is consistent with a single dominant trans conformation within a double-chair skeleton, which is stabilized by more than 10.4 kJ mol(-1) with respect to other conformations.
View Article and Find Full Text PDFThe pure rotational spectra of the bicyclic aromatic nitrogen heterocycle molecules, quinazoline, quinoxaline, and phthalazine, have been recorded and assigned in the region 13-87 GHz. An analysis, guided by ab initio molecular orbital predictions, of frequency-scanned Stark modulated, jet-cooled millimeter wave absorption spectra (48-87 GHz) yielded a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis at higher resolution was carried out with Fourier transform microwave (FT-MW) spectroscopy (13-18 GHz) of a supersonic rotationally cold molecular beam.
View Article and Find Full Text PDF