To be effective, microbiological studies of deep aquifers must be free from surface microbial contaminants and from infrastructures allowing access to formation water (wellheads, well completions). Many microbiological studies are based on water samples obtained after rinsing a well without guaranteeing the absence of contaminants from the biofilm development in the pipes. The protocol described in this paper presents the adaptation, preparation, sterilization and deployment of a commercial downhole sampler (PDSshort, Leutert, Germany) for the microbiological studying of deep aquifers.
View Article and Find Full Text PDFThe first objective of this study is to present unique field data on a three-year pilot test during which air containing 8 mol% O(g) was injected as a cushion gas into a natural gas reservoir, a carbonate-cemented sandstone aquifer located in the Paris Basin (France). 10-year system survey showed that: the oxygen was fully depleted several months after injection completion, meanwhile CO(g) was detected around 2-6 mol%; the pH decreased from 8 to 6, while reducing conditions shifted to mildly oxidizing ones with increasing concentration of sulfates in equilibrium with gypsum. 3 years after injection completion, the pH gradually returned to its near initial state and sulfates were reduced by 2 to 3 times.
View Article and Find Full Text PDFDeep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH and H), (ii) CO sequestration; and (iii) resource (water, rare metals) exploitation.
View Article and Find Full Text PDFThe last few years have seen the proliferation of anaerobic digestion plants to produce biomethane. Oxygen (O) traces added to biogas during the desulfurization process are co-injected in the gas network and can be stored in Underground Gas Storage (UGS). However, there are no data available for the undesirable effects of O on these anoxic environments, especially on deep aquifers.
View Article and Find Full Text PDFAround the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group.
View Article and Find Full Text PDFThe formation water of a deep aquifer (853 m of depth) used for geological storage of natural gas was sampled to assess the mono-aromatic hydrocarbons attenuation potential of the indigenous microbiota. The study of bacterial diversity suggests that Firmicutes and, in particular, sulphate-reducing bacteria (Peptococcaceae) predominate in this microbial community. The capacity of the microbial community to biodegrade toluene and m- and p-xylenes was demonstrated using a culture-based approach after several hundred days of incubation.
View Article and Find Full Text PDFTwo novel strictly anaerobic bacteria, strains Bs105T and Bs107T, were isolated from a deep aquifer-derived hydrocarbonoclastic community. The cells were rod-shaped, not motile and had terminal spores. Phylogenetic affiliation and physiological properties revealed that these isolates belong to two novel species of the genus Desulfotomaculum.
View Article and Find Full Text PDF