Background: Women with a cervicovaginal microbiota dominated by Lactobacillus spp. are at reduced risk of acquiring sexually transmitted infections including HIV, but the biological mechanisms involved remain poorly defined. Here, we performed metaproteomics on vaginal swab samples from young South African women (n = 113) and transcriptomics analysis of cervicovaginal epithelial cell cultures to examine the ability of lactic acid, a metabolite produced by cervicovaginal lactobacilli, to modulate genital epithelial barrier function.
View Article and Find Full Text PDFThe COVID-19 pandemic has resulted in an unprecedented global demand for in vitro diagnostic reagents. Supply shortages and hoarding have impacted testing capacity which has led to inefficient COVID-19 case identification and transmission control, predominantly in developing countries. Traditionally, RNA extraction is a prerequisite for conducting SARS-CoV-2 nucleic acid amplification tests (NAAT); however, simplified methods of sample processing have been successful at bypassing typical nucleic acid extraction steps, enabling extraction-free SARS-CoV-2 NAAT workflows.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a recently emerged and highly contagious virus that causes coronavirus disease 2019 (COVID-19). As of August 24, 2021, there were more than 212 million confirmed COVID-19 cases and nearly 4.4 million deaths reported globally.
View Article and Find Full Text PDFNon-optimal vaginal microbiota, as observed in bacterial vaginosis (BV), is typically characterized by a depletion of beneficial lactobacilli and an abundance of numerous anaerobes. These non-optimal conditions are associated with subclinical cervicovaginal inflammation and an increased risk of HIV infection compared to women colonized with optimal vaginal microbiota dominated by lactobacilli. Lactic acid (LA) is a major organic acid metabolite produced by vaginal lactobacilli that elicits anti-inflammatory effects from cervicovaginal epithelial cells and is dramatically depleted during BV.
View Article and Find Full Text PDF