Monitoring selenium (Se) concentrations in fish ovaries is an important tool for evaluating the ecological risk posed by Se in aquatic systems. Most guidance recommends sampling fish ovaries as closely as possible to when fish spawn on the premise that Se is mobilized from the liver to the ovary during vitellogenesis, and therefore, sampling ovaries during the early phases of oocyte maturation may underestimate egg Se concentrations at the time of spawning. In this study, we evaluated ovary Se data from two species with synchronous oocyte development (Ptychocheilus oregonensis and Prosopium williamsoni), one species with asynchronous oocyte development (Richardsonius balteatus), and one where the mode of development is unclear (Mylocheilus caurinus).
View Article and Find Full Text PDFA series of chronic toxicity tests was conducted exposing three aquatic species to iron (Fe) in laboratory freshwaters. The test organisms included the green algae Raphidocelis subcapitata, the cladoceran Ceriodaphnia dubia, and the fathead minnow Pimephales promelas. They were exposed to Fe (as Fe (III) sulfate) in waters under varying pH (5.
View Article and Find Full Text PDFWe developed multiple linear regression (MLR) models for predicting iron (Fe) toxicity to aquatic organisms for use in deriving site-specific water quality guidelines (WQGs). The effects of dissolved organic carbon (DOC), hardness, and pH on Fe toxicity to three representative taxa (Ceriodaphnia dubia, Pimephales promelas, and Raphidocelis subcapitata) were evaluated. Both DOC and pH were identified as toxicity-modifying factors (TMFs) for P.
View Article and Find Full Text PDFMultiple linear regression (MLR) models for predicting zinc (Zn) toxicity to freshwater organisms were developed based on three toxicity-modifying factors: dissolved organic carbon (DOC), hardness, and pH. Species-specific, stepwise MLR models were developed to predict acute Zn toxicity to four invertebrates and two fish, and chronic toxicity to three invertebrates, a fish, and a green alga. Stepwise regression analyses found that hardness had the most consistent influence on Zn toxicity among species, whereas DOC and pH had a variable influence.
View Article and Find Full Text PDFNitrite is a naturally-occurring inorganic compound that occurs in aquatic environments as an intermediary between nitrate and ammonia in the nitrogen cycle. It is a contaminant of potential concern resulting from anthropogenic activities in some cases. While the acute toxicity of nitrite has been characterized in previous studies, its sublethal toxicity is less understood.
View Article and Find Full Text PDFThe equilibrium partitioning sediment benchmarks (ESBs) derived by the US Environmental Protection Agency (USEPA) in 2005 provide a mechanistic framework for understanding metal bioavailability in sediments by considering equilibrium partitioning (EqP) theory, which predicts that metal bioavailability in sediments is determined largely by partitioning to sediment particles. Factors that favor the partitioning of metals to sediment particles, such as the presence of acid volatile sulfide (AVS) and sediment organic matter, reduce metal bioavailability to benthic organisms. Because ESBs link metal bioavailability to partitioning to particles, they also predict that measuring metals in porewater can lead to a more accurate assessment of bioavailability and toxicity to benthic organisms.
View Article and Find Full Text PDFThe US Environmental Protection Agency Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc) equilibrium partitioning approach causally link metal concentrations and toxicological effects; they apply to sediment and porewater (i.e., interstitial water).
View Article and Find Full Text PDFUS Environmental Protection Agency (USEPA) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures are based on the principle that metals toxicity to benthic organisms is determined by bioavailable metals concentrations in porewater. One ESB is based on the difference between simultaneously extracted metal (SEM) and acid volatile sulfide (AVS) concentrations in sediment (excess SEM). The excess SEM ESBs include a lower uncertainty bound, below which most samples (95%) are expected to be "nontoxic" (defined as a bioassay mortality rate ≤24%), and an upper uncertainty bound, above which most samples (95%) are expected to be "toxic" (defined as a mortality rate >24%).
View Article and Find Full Text PDFToxicity-modifying factors can be modeled either empirically with linear regression models or mechanistically, such as with the biotic ligand model (BLM). The primary factors affecting the toxicity of nickel to aquatic organisms are hardness, dissolved organic carbon (DOC), and pH. Interactions between these terms were also considered.
View Article and Find Full Text PDFAn increasing number of metal bioavailability models are available for use in setting regulations and conducting risk assessments in aquatic systems. Selection of the most appropriate model is dependent on the user's needs but will always benefit from an objective, comparative assessment of the performance of available models. In 2017, an expert workshop developed procedures for assessing metal bioavailability models.
View Article and Find Full Text PDFSelenium (Se) toxicity to fish is primarily manifested via maternal transfer to the eggs, which may result in adverse effects on larval survival and development. The present study assessed the effects of egg Se concentrations derived via maternal transfer on early life-stage development, survival, and growth of Arctic grayling (Thymallus arcticus), a salmonid species not previously assessed for Se sensitivity. Fish gametes were collected from 4 streams in Alaska known to exhibit a range of egg Se concentrations.
View Article and Find Full Text PDFMultiple linear regression (MLR) models for predicting chronic aluminum toxicity to a cladoceran (Ceriodaphnia dubia) and a fish (Pimephales promelas) as a function of 3 toxicity-modifying factors (TMFs)-dissolved organic carbon (DOC), pH, and hardness-have been published previously. However, the range over which data for these TMFs were available was somewhat limited. To address this limitation, additional chronic toxicity tests with these species were subsequently conducted to expand the DOC range up to 12 mg/L, the pH range up to 8.
View Article and Find Full Text PDFRecently, there has been renewed interest in the development and use of empirical models to predict metal bioavailability and derive protective values for aquatic life. However, there is considerable variability in the conceptual and statistical approaches with which these models have been developed. In the present study, we review case studies of empirical bioavailability model development, evaluating and making recommendations on key issues, including species selection, identifying toxicity-modifying factors (TMFs) and the appropriate environmental range of these factors, use of existing toxicity data sets and experimental design for developing new data sets, statistical considerations in deriving species-specific and pooled bioavailability models, and normalization of species sensitivity distributions using these models.
View Article and Find Full Text PDFSince the mid-1970s, thousands of studies have evaluated the toxicity of various chemicals to aquatic organisms. Results from many of these studies have been used to develop species sensitivity distributions (SSDs) or genus sensitivity distributions (GSDs) for deriving water quality guidelines. Recently, there has been more emphasis on evaluating the toxicity of chemicals to sensitive organisms rather than the entire range of sensitivities.
View Article and Find Full Text PDFThere is concern over whether regulatory criteria for copper (Cu) are protective against chemosensory and behavioral impairment in aquatic organisms. We compiled Cu toxicity data for these and other sublethal endpoints in 35 tests with saltwater organisms and compared the Cu toxicity thresholds with biotic ligand model (BLM)-based estimated chronic limits (ECL values, which are 20% effect concentrations [EC20s] for the embryo-larval life stage of the blue mussel [Mytilus edulis], a saltwater species sensitive to Cu that has historically been used to derive saltwater Cu criteria). Only 8 of the 35 tests had sufficient toxicity and chemistry data to support unequivocal conclusions (i.
View Article and Find Full Text PDFA meta-analysis was conducted of studies that reported behavior and chemo/mechanosensory responses by fish, amphibians, and aquatic invertebrates in Cu-containing waters and also reported sufficient water chemistry for calculation of hardness-based and biotic ligand model (BLM)-based water quality criteria (WQC) for Cu. The calculated WQC concentrations were then compared with the corresponding 20% impairment concentrations (IC20) of Cu for those behavior and chemo/mechanosensory responses. The hardness-based acute and chronic WQC for Cu would not have been protective (i.
View Article and Find Full Text PDFThe bioavailability of aluminum (Al) to freshwater aquatic organisms varies as a function of several water chemistry parameters, including pH, dissolved organic carbon (DOC), and water hardness. We evaluated the ability of multiple linear regression (MLR) models to predict chronic Al toxicity to a green alga (Pseudokirchneriella subcapitata), a cladoceran (Ceriodaphnia dubia), and a fish (Pimephales promelas) as a function of varying DOC, pH, and hardness conditions. The MLR models predicted toxicity values that were within a factor of 2 of observed values in 100% of the cases for P.
View Article and Find Full Text PDFThe US Environmental Protection Agency's (USEPA's) current ambient water quality criteria (AWQC) for lead (Pb) in freshwater were developed in 1984. The criteria are adjusted for hardness, but more recent studies have demonstrated that other parameters, especially dissolved organic carbon (DOC) and pH, have a much stronger influence on Pb bioavailability. These recent studies have been used to support development of a biotic ligand model (BLM) for Pb in freshwater, such that acute and chronic Pb toxicity can be predicted over a wide range of water chemistry conditions.
View Article and Find Full Text PDFThe US Environmental Protection Agency's (USEPA's) ambient water quality criteria (AWQC) for lead (Pb) in salt water were developed in 1984. The acute and chronic criteria are 210 and 8.1 μg/L dissolved Pb, respectively.
View Article and Find Full Text PDFBiotic Ligand Models (BLMs) for metals are widely applied in ecological risk assessments and in the development of regulatory water quality guidelines in Europe, and in 2007 the United States Environmental Protection Agency (USEPA) recommended BLM-based water quality criteria (WQC) for Cu in freshwater. However, to-date, few states have adopted BLM-based Cu criteria into their water quality standards on a state-wide basis, which appears to be due to the perception that the BLM is too complicated or requires too many input variables. Using the mechanistic BLM framework to first identify key water chemistry parameters that influence Cu bioavailability, namely dissolved organic carbon (DOC), pH, and hardness, we developed Cu criteria using the same basic methodology used by the USEPA to derive hardness-based criteria but with the addition of DOC and pH.
View Article and Find Full Text PDFThere is consensus that fish are the most sensitive aquatic organisms to selenium (Se) and that Se concentrations in fish tissue are the most reliable indicators of potential toxicity. Differences in Se speciation, biological productivity, Se concentration, and parameters that affect Se bioavailability (e.g.
View Article and Find Full Text PDF